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1. Executive summary 
After a brief preface (chapter 2), chapter 3 of this document presents a background to the 
techniques of modelling. Chapter 4 discusses specific roles which models may play in animal 
health decision making. The different types of model, their scope, basic principles and 
constraints, are discussed. Chapter 5 provides examples of the use of modelling in animal 
disease control planning and evaluation. In particular earlier models of foot-and-mouth 
disease (FMD) and modelling of the 1997/98 classical swine fever (CSF) epidemic in the 
Netherlands are discussed. Chapter 6 specifically examines the influence of modelling during 
the FMD epidemic in the UK in 2001. Chapter 7 provides recommendations for the future 
research and development required to support decisions involved in control of FMD. Chapter 
8 presents guidelines to be followed when using models to support decision making. 

1.1 Modelling basics 
Principally, models are used as a substitute for, or adjunct to, real life study. They mimic real 
life and are most often used to explore how a situation may develop in response to different 
interventions.  

However, models can also be used as an aid to understanding how a real system works. In this 
case the veracity of the end result of the model (i.e. the accuracy of any predictions) may be 
secondary to the process of modelling itself. 

Models can also be an important aid to communication. They can help in explaining complex 
and often difficult aspects of system behaviour to ‘non-experts’, especially if the models can 
produce graphical visual, even animated, outputs. However, the very fact that such graphical 
outputs can be persuasive may also be a danger if the limitations of a model are not 
appreciated, or, indeed, if a model is fundamentally flawed. The output, by its very nature of 
consisting of numbers and charts can appear deceptively certain. 

1.1.1 Importance of data in making models 
Any model ultimately depends for its validity on the accuracy and completeness of the data 
underpinning it. Close collaboration between the model builders and subject matter experts is 
important in ensuring that a model is based in reality. With respect to modelling of FMD, 
there is still some way to go before all the data required for comprehensive models are 
available. The UK epidemic of 2001 represents a potential source of data. Careful analysis of 
the epidemic will help to identify important epidemiological determinants of that particular 
epidemic. However, there are still data gaps, on detailed virology (e.g. survival of virus in 
different conditions, infectious doses by different routes to different species etc.) and on 
disease spread within populations (e.g. the probabilities of different types of contacts between 
animals, and what factors govern these probabilities) which make the production of models 
with truly predictive capacity difficult, if not impossible.  

1.1.2 Validation of models 
There are no simple rules to follow when validating models. Several key issues are identified 
in chapter 3 and again repeated in chapter 8. These are: 

∗  Valid models should make biological sense; 

∗  Valid models should mimic real life; 

∗  Valid models should be fit for the use they are designed for; 
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∗  Sensitivity analysis should be carried out to assess the influence of uncertain parameters 
on the model outcome. 

1.2 Examples of use of models in animal health 

1.2.1 Before 2001 
FMD 
Several models are described in chapter 5. Those of Miller (1976), Haydon and others (1997) 
and Howard and Donnelly (2000) were all state-transition models in which the population of 
farms was assumed to be homogeneous, i.e. all equally susceptible and equally infectious 
following infection. The models did not attempt to represent the spatial arrangement of the 
population or any heterogeneity in the contact structure of the population. These models were 
used to evaluate different control strategies as an aid to contingency planning for epidemics. 

InterSpread (Sanson and others, 1994) is a model that attempts to simulate the spread of 
disease in a quasi-realistic way. This was developed as a component of an epidemic 
management system, that would be used as a tool during combat of an unfolding epidemic. 

Specialised models of the airborne spread of FMD and risk assessments are also discussed. 

CSF 
The Dutch made quite extensive use of disease modelling and in particular demonstrated the 
flexibility of the InterSpread model as a basis to model CSF and other diseases. Modelling 
was used exclusively in the retrospective evaluation of the 1997/98 epidemic and the control 
measures used. Lessons were learned which contributed to contingency planning for the 
future. The use of a financial model along with the disease model was key in the use of 
modelling to influence policy. Arguments for different choices could be made on financial 
grounds. Also the costs of disease and control were split into public and private categories, 
and this informed the debate about who should bear the cost of measures aimed at preventing 
and/or limiting future epidemics. 

Regarding the use of such models to support tactical decisions during epidemics, the view of 
those closely involved in this process is that such complicated simulation models should not 
be used during an epidemic, but in fact between epidemics to be better prepared and study 
‘what-if’ situations. This means that models may be used to study a range of hypothetical 
situations, in order to provide guidelines for contingency planning, but then tactical decisions 
during epidemics are better based on field data which may rapidly indicate which modelled 
situation is actually being faced. 

1.2.2 During the FMD epidemic in UK in 2001 
The FMD epidemic in UK in 2001 was the first situation in which models were developed in 
the ‘heat’ of an epidemic and used to guide control policy. The engagement of modelling with 
the control of the FMD epidemic was not part of the pre-arranged contingency plan, but came 
about in an ad hoc way. The models are discussed in detail in chapter 6 and, with the benefit 
of hindsight, an assessment of their validity and the appropriateness of their use in tactical 
decision making is made. 

A key tactical decision made with the strong support of models was the introduction of the 
contiguous culling policy. Evidence from later analyses, by one of the groups who produced 
the model key to this decision (the Imperial College group), and other analyses of the field 
data, suggest that the contiguous culling policy may not have been necessary to control the 
epidemic, as was suggested by the models produced within the first month of the epidemic. If 
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this is indeed the case then it must be concluded that the models supporting this decision were 
inherently invalid and/or used in an inappropriate way. 

This conclusion was also implied by other reviewers of the models. Kao (2002) questioned 
the value of making detailed quantitative predictions for alternative policies, and Green and 
Medley (2002) suggested that the use of models to provide specific tactical advice early in the 
epidemic was not an ideal use of modelling. 

It is suggested that incorrect assumptions used in building the models were responsible for the 
recommendation that contiguous culling was necessary to stop the epidemic. If an epidemic is 
modelled with parameters which describe disease spread as being predominantly over very 
short distance then such models will demonstrate a beneficial effect of local culling. In 
addition, if the model has the majority of disease spread from IPs occurring before reporting 
of disease, then such models will inevitably conclude that pre-emptive culling (culling 
premises before disease is reported) is essential to control the epidemic. To be effective, the 
pre-emptive culling would be targeted at the premises most likely to have been infected, i.e. 
local or neighbouring premises. The Imperial College and Cambridge/Edinburgh models were 
parameterised in just such a way that favoured the use of contiguous pre-emptive culling. 
However, the field data on which these parameters were based was deficient, and subsequent 
analyses are suggesting that the model parameterisation in these crucial areas was incorrect – 
i.e. short distance spread was not as predominant as modelled and the infectivity of infected 
farms was not maximal until after disease reporting. 

Two main problems within the process of decision-making on FMD control during 2001 are 
identified: 

1. The existing contingency plan for FMD control was overwhelmed and had no ‘ready 
made’ fall back position. 

2. Field data were not being adequately collected and analysed early in the epidemic – in 
other words there was a lack of ‘veterinary intelligence’. The best decisions are made on 
the basis of good information. Had more accurate and timely field data been available in 
2001, a better analysis of the developing situation may have led decisions in different 
directions. In 2001, the quality of information was compromised and model-based 
analysis was used as a substitute for poor information. What was perhaps not taken into 
account was that models themselves are equally dependent on good information for their 
validity. In truth, models were simply the tool used to analyse the data, but the novelty of 
this analytical tool to decision makers at the time and the nature of model outputs to 
appear more certain than perhaps they are, meant that the distinction between data and 
assumption was lost. 

It will be important in the future to establish better bases for making tactical disease 
control decisions. 

1.3 Recommendations for the future 
Chapter 7 presents recommendations for further research and the role of modelling in the 
future, with particular reference to FMD control. 

1.3.1 Potential roles of models with respect to FMD control 
Modelling can contribute in all of the following areas: 

∗  retrospective analysis of epidemics and evaluation of different control strategies; 
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∗  contingency planning – exploration of the effect of different strategies in hypothetical 
epidemics; 

∗  resource planning – exploration of the resource requirements of different strategies in 
hypothetical epidemics; 

∗  training – the use of models to provide ‘virtual’ experience of epidemic combat; 

∗  surveillance targeting – in particular the use of risk assessments to identify priority areas; 

∗  tactical decision support – limited use of models during epidemics. 

The most appropriate use of models is as tools in ‘peacetime’ to aid retrospective analysis of 
real epidemics to gain insights into behaviour of epidemics. Hypothetical scenarios can then 
be modelled to develop insights into the relative merits of different strategies in different 
situations. In this way decision makers can be provided with a priori supporting guidelines. 

The use of models during ‘wartime’ should then be restricted to monitoring the epidemic and 
aiding short term fine adjustments to strategies. ‘Wartime’ models should be one of several 
tools available to the epidemiologists to aid them in analysing and understanding the 
behaviour of the epidemic. Comparing real behaviour to ‘expected’ (model-generated) 
behaviour could alert epidemiologists to unexpected circumstances in the field which could 
then be targeted for action. ‘Wartime’ models could also be used to carry out limited ‘what-if’ 
simulations, to assess risks associated with various developments of the epidemic, so that 
appropriate contingencies could be made in resource planning. During epidemics, models can 
be usefully used to support the requisition of resources needed by well-tried control measures 
by graphically demonstrating the possible development of an epidemic. 

1.3.2 Specific needs of DEFRA with respect to FMD control 
There is a need to have more detailed contingency plans ahead of time; plans which cover 
several scenarios, including worst case scenarios, and anticipate the criteria on which 
decisions to adjust strategies and/or bring in different strategies will be made. 

Contingency planning should be based on the wide range of available knowledge about 
disease epidemiology, disease control, the logistics of control and the economic consequences 
of disease and control. Modelling can play an important part in combining all this knowledge 
together to produce useful output for decision support.  

The conclusion of this report is that the use of predictive models to support tactical decisions 
is not to be recommended. Tactical decision making should be based more on real veterinary 
intelligence than on predictive modelling. However, models can also play a role in 
interpretation of veterinary intelligence.  

The establishment of a dedicated modelling section at DEFRA headquarters level is not 
recommended. Modelling is a highly specialised area of work, in which techniques are 
various, constantly developing and becoming ever more sophisticated. Attempting to 
establish, within DEFRA, a group who’s modelling work might be considered ‘definitive’, 
and given priority over the work of other groups outside DEFRA, is unrealistic and would 
also lead to an over-reliance on model-generated solutions. 

Rather, DEFRA needs to make sure that it has staff with adequate skills, in particular 
quantitative epidemiology, of which modelling is just a part, so that they can better integrate 
scientific advice with policy making. DEFRA should establish a core group with broad 
expertise in epidemiology, including quantitative epidemiology, which includes an 
understanding of statistical analysis and modelling. This group could consist of both 
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headquarters and field based staff. The remit of this ‘epidemiology group’ would be to collate, 
analyse, and interpret all information on animal health issues about which decisions are to be 
made. The group, would, of course, call on outside specialist expertise, for example in 
modelling, where necessary. The group would also be responsible for evaluation of all 
research which may have implications for animal health policy. The models developed during 
2001 are still being used to explore aspects of FMD epidemiology and control. Modelling 
methodology is also being developed and opportunities to use novel approaches to explore old 
issues may arise. Researchers whose work may be relevant to DEFRA policy should be 
invited to discuss their work in a forum including DEFRA and independent scientists. One 
suggestion would be to maintain a standing committee to regularly review FMD 
epidemiological research, including modelling, being carried out in the wider scientific 
community, so that, where possible the results of good research may be incorporated into 
policy. The suggested DEFRA epidemiology group could play a key role in coordinating and 
contributing to this activity. 

With particular reference to FMD, establishment of such a group would ensure that all 
possible lessons are learned from the 2001 epidemic. 

In any future epidemic, such a group would be responsible for the rapid provision of real 
veterinary intelligence, based on targeted monitoring of key parameters of the unfolding 
epidemic. 

1.3.3 The main areas for epidemiological (including modelling) research 
The following are suggested as specific issues for DEFRA to address:  

∗  quantitative analyses of real FMD epidemics; 

∗  ‘basic’ epidemiology of FMD – experimental studies. 

∗  commissioning of work to address specific policy questions as an ongoing, reviewing and 
updating, contingency planning process, this to include economic and practical logistic 
considerations; 

∗  development of an ‘in-house’ simulation model for use as part of an epidemic 
management system and for training exercises; 

∗  development of other tools for ‘wartime’ epidemic management – e.g. logistics models, 
risk assessments, airborne spread models; 

1.4 Practical guidelines for the use of models 
Chapter 8 provides a brief summary of the practical lessons to be learned from this report. 
This chapter should be read in full, but some of the most important points are also reproduced 
below. 

From the outset it must be understood that models are rarely universal, or reproductions of 
reality in miniature. Models are most often produced to serve a specific purpose or to answer 
a specific question, and therefore include only what is relevant to their purpose. When 
commissioning research, the desired output is what should be specified, with the methodology 
left open to the researchers, unless of course, a working model forms part of the desired 
output. The problem to be solved, or the decision to be supported must be defined and the 
detail of information required must be specified. 

It is extremely important that any interpretation of model output is made with reference to the 
assumptions and simplifications inherent in the model. Sensitivity analysis must be carried out 
to assess the influence of assumptions and simplifications on the final model outcome. 
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Sensitivity analysis is used particularly when the values assigned to model parameters are 
uncertain due to lack of good quality data. A model which is highly sensitive to parameters on 
which there is little reliable data is of limited use, perhaps even dangerous, in decision 
making. 

Since the process of model building can itself be a learning process there is much to be said 
for decision makers and their advisers themselves being involved with or interacting with the 
process. This would ensure that the simplifications, assumptions and limitations of the model 
are fully appreciated by all involved in the decision. 

When presented with model results, it is especially important that decision makers understand 
that the range of outcomes predicted by a stochastic model, or the confidence intervals 
associated with the results of a deterministic model, may result from any of three sources: 

∗  natural variability in the real world (reflected in the model); 

∗  the effect of chance events in the real world (reflected in the model), or; 

∗  data uncertainty (insufficient precision in knowledge). 
The fact that a stochastic model predicts a range of possible ‘futures’, reflecting the 
unpredictability of real life, means that it must be used with care as a decision support tool. 
Decision makers must not rely on the model to make a decision for them but be prepared to 
use it as part of a process in which other factors, such as the ‘riskiness’ of a policy, are 
weighed. This means that models cannot provide complete and unequivocal answers to a 
decision making problem. Models should therefore be seen as tools for exploring some of the 
issues involved, but the criteria on which the decision will be based will include other issues 
not addressed by the model. 

Decision makers require some sort of framework within which model results can be combined 
with other quantitative and qualitative criteria to guide decisions. Development of such a 
framework may be a useful topic for future research. 
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2. Preface 
The development of quantitative epidemiology has shifted the purpose of epidemiology from 
that of simply providing technical information on the life cycle of diseases and methods to 
control them to that of providing up to date ‘disease situation analyses’, complete with 
estimates of the economic effects of disease and consequences of alternative control 
strategies. There is an expectation that the availability of improved data about animal disease 
and its epidemiological analysis will lead to the development of better policies on disease 
control. With the role in policy development in mind it has become common to view 
epidemiology as an important component of a ‘decision support system’. 

The decision support ‘toolbox’ has been gradually developed and filled with tools. These 
include statistical methods related to disease surveillance and analytical epidemiology, 
information technology used in data management and communication, mathematics and 
computer programming used in disease modelling and economic methods. 

Of these new tools, disease modelling has proved to be a particularly important development. 
Since decision making involves an assessment of the future course of events following the 
choice of a particular action, the ability to represent reality using a model is seen as an 
invaluable decision support tool, especially if the model can be used to somehow predict the 
future. 
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3. Background to modelling: basic techniques 

3.1 What is a model? 
A model is a representation of reality, almost always simplified in some way. In technical 
language, a model is a representation of a ‘system’. A system is defined as a collection of 
components which work together to produce some kind of output. In real life the system 
reacts to various external influences through its components so that the output is modified. 
With simple systems it is often possible to predict the effect of external influences on the 
output without the need for a model, e.g. vaccination on an individual animal will produce the 
effect of protection from a given disease. But as systems become more complex it is no longer 
possible to guess exactly how the system will behave in different circumstances, e.g. what 
would be the effect on disease incidence of vaccination of only certain classes of livestock 
within a large population? The boundaries of the system have been cast wider so that more 
interacting components have to be considered simultaneously in order to predict the effect of 
vaccination – in this case these components include the structure of the population and its 
dynamics. Models of complex systems are made in order to understand the effect of external 
influences on output through representation of the interactions between the component parts 
of the system, i.e. to answer the questions, “what might happen if…?”, and sometimes also, 
“why or how does the effect come about?”. 

3.2 Why make models? 
The prediction of the outcome of a particular action on a system is not the only use to which 
models may be put. Models can have several uses. In addition to using models: 

∗  to predict the effects of changing or modifying different components in the system; 
models may also be used: 

∗  to test (verify) and improve our understanding of a system; 

∗  to analyse and explain behaviour of a complex system, and; 

∗  to determine the relative importance of different components of the system. 

Models can therefore be used as an aid to understanding, rather than being an end in 
themselves. 

Teclaw (1979) says: “Models not only mimic real systems in a more comprehensible 
way, but may go beyond description and lead to conclusions contrary to intuition. 
Additional benefits of models include the ability to experiment with a complex system 
without actually tampering with the real system. Models aid in hypothesis 
formulation and testing. Important variables operating within the system may be 
identified. The time scale may be expanded or contracted through the use of models. 
Certain well-constructed models may be used for forecasting, but the outcomes 
should be expressed as probabilities.” 

A further common benefit of model building is that during the modelling process areas where 
our knowledge of the system is fundamentally lacking are often identified, so that field 
research can be directed more effectively.  
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Dent and Blackie (1979) say: model building “forces those concerned with building 
the simulation model to examine the system objectively and consequently undertake a 
thorough and critical review of knowledge concerning the system. The enlightenment 
that this process provides is often surprising.” 

Models can be an important aid to communication. They can help in explaining complex and 
often difficult aspects of system behaviour to ‘non-experts’, especially if the models can 
produce graphical visual, even animated, outputs. However, the very fact that such graphical 
outputs can be persuasive may also be a danger if the limitations of a model are not 
appreciated, or, indeed, if a model is fundamentally flawed. The output, by its very nature of 
consisting of numbers and charts can appear deceptively ‘correct’. 

3.3 Basic considerations and modelling problems 

3.3.1 Beginning 
The first decision to be taken in model building relates to the overall extent and scope of the 
model. The boundaries of the system to be modelled need to be set. In fact there are two sets 
of boundaries to consider – in a model of FMD the ‘inner boundary’ might be the farm or the 
individual animal and the outer boundary might be the national population. 

The level of detail to be included within these boundaries also needs to be considered, e.g. are 
different farm types to be represented differently in the model? It is important to realise that it 
is not always necessary to include every detail of the system in a model to arrive at a 
satisfactory answer to the question asked of the model. Haywood and Haywood (2002) 
comment that including too much detail can confuse the output of a model. 

The scope of the model is another kind of boundary issue relating to the level to which the 
outcomes of the system are to be modelled, e.g. are numbers of infected farms sufficient as 
the model output or is it required to model the economic effects of disease on the national 
economy? A common approach to these issues is to split the modelling effort into a series of 
sub-models, which can be fitted together. 

Having decided on the important parameters to be included in a model, if the model is to be 
quantitative rather than conceptual (e.g. a simple diagram), the parameters must be given 
values. Some values are easily knowable, e.g. the number of farms in a given county, but 
other values may be difficult or impossible to measure in real life, e.g. the probability of 
contact between two specific farms on a given day. It is inevitable that in model building 
simplifications and assumptions will have to be made to overcome this issue. This does not 
invalidate modelling but it is extremely important that any interpretation of model output is 
made with reference to the assumptions and simplifications inherent in the model. Specific 
areas where assumptions and simplifications are made are discussed below. 

3.3.2 Real life is variable 
For example, milk yield of cows varies, prices of products vary, incubation periods of disease 
vary etc.. Some models deal with this variability by assigning average values to parameters 
(simplification). Other models aim to be more realistic by assigning parameter values which 
are individually chosen from a distribution. In the latter method, different individuals in the 
model can have different values for the same parameter, e.g. if a disease model has 10 animals 
infected with virus the incubation periods may be different for each animal. The incubation 
periods may be chosen from a normal distribution with, say, mean 5 days and standard 
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deviation 1 day. The computational processes or programming of the model are set up such 
that, although incubation periods are randomly assigned to individuals, the end result will be 
that the mean incubation period in the modelled population will be 5 days (with standard 
deviation 1 day) – i.e. the model is realistic. However, the model is still based on an 
assumption that the mean and standard deviation of incubation period in the modelled 
population will be the same as measured in a different population. 

3.3.3 Real life is subject to chance 
Systems, in particular those containing living things, do not respond to stimuli exactly the 
same way every time. Many events in real life appear to occur by chance. Chance is 
quantified using the concept of probability. For example, given exposure to a source of 
infection an animal may or may not become infected. Models may deal with chance by 
representing what happens on average (simplification), e.g. when a group of animals are 
exposed the model assumes that a fixed proportion of them will become infected – this 
proportion is equal to the probability of infection. Other models explicitly model the chance 
element by randomly infecting, or not, each individual animal. This is done by generating a 
random number for each animal between zero and one – if the random number is less than or 
equal to the probability of infection then the animal is infected. This is known as the ‘Monte 
Carlo’ method. Given several groups of 10 animals exposed and a probability of infection of 
0.2, the resulting number of animals infected in each group will tend to be around two (the 
expected or average outcome) but it is possible that in some groups no animals are infected 
and in other groups more than two are infected. The mathematical distribution of numbers 
infected is binomial. An alternative modelling technique is to treat the exposed animals as a 
group and assign the number infected by programming the model to choose a number directly 
from a binomial distribution. 

3.3.4 Real life contains uncertainty (lack of precise knowledge) 
Modelling is a rigorous discipline. Building a quantitative model requires that the parameters 
in the system are quantified. For example, it is not sufficient to know that “sometimes sheep 
stray from one farm to another, potentially spreading infection”, if this event is to be 
modelled then it is necessary to assign a probability to sheep straying. It is frequently 
encountered when building models that values of parameters or probabilities have to be 
assigned when there is no objective evidence, such as estimates from large scale surveys, of 
what the true value or probability might be. The problem of uncertainty in a system which 
modellers wish to model is circumvented by assigning values based on a best guess 
(assumption), perhaps resulting from consultation with several experts (expert opinion). In 
some models a single value is used but in other models a degree of uncertainty in the 
guestimate may be represented in the model by assigning an uncertain value as a distribution, 
e.g. most likely value with minimum and maximum. This is similar to the inclusion of 
variability in models but it is important to realise that there is a qualitative difference – in this 
case the distribution reflects uncertainty, resulting from a lack of precise knowledge, not 
measured real life variation. The result is more variability in the model output, but rather than 
representing natural (realistic) variability, the variability due to the uncertain parameters 
reflects lack of precision in the model, which is a result of lack of data and/or knowledge 
about the real life system. 

3.3.5 Events are connected 
Typically, the output of a system is the result of chains of events. Sometimes the probability 
of an event depends on previous events in the chain, e.g. a farmer who has received an animal 
as a result of an illegal movement may well be less likely to report suspected disease promptly 
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than farmers in general. To take account of dependencies of probabilities through chains of 
events models have to be more complex. Whether an increase in complexity to achieve 
greater realism is justified is usually left to the discretion of the modeller. 

3.3.6 Real life can be truly chaotic 
Events which are subject to chance may yet be somewhat predictable when something is 
known about the probabilities involved with those events, because they will follow some sort 
of pattern.  

However, if the probabilities of certain events happening are themselves variable, and 
therefore essentially unknowable, these events will not follow a pattern. They will be chaotic 
and therefore unpredictable. Chaotic events can be modelled, but here the purpose is to better 
understand how the events come about, rather than to attempt to predict when the next event 
might be. For an example see section 6.2.5, where a risk model of the introduction of FMD to 
UK livestock is described. 

3.3.7 Behaviour can change over time 
When modelling a process which takes place over a considerable period of time, such as a 
disease epidemic, it must be recognised that behaviour may change over time. For example, as 
an epidemic of FMD progresses farmers may pay increasing attention to reduction of contacts 
between their livestock and livestock of other farms. If an epidemic is very prolonged farmers 
may ‘fatigue’ and lessen the attention they pay to restricting contacts. Thus, the contact 
parameters in a model, if the model is to be as realistic as possible, should also change over 
time. However, it is very difficult to predict how such behaviour might change in the future 
which means that predictive models of epidemics can only be based on assumptions about 
future changes in independent parameters. Commonly predictions are based on the 
assumption that things remain as they are, unchanged. 

3.3.8 In conclusion 
The modelling problems described above are inherent to any attempt to describe concisely the 
real world. Simplification is inevitable. 

Graat and Frankena (1997) say “As a model is made to be used for a specific goal … 
only key elements of a system or process are included… therefore, a model is by 
definition a simplification of the real system or process.” 

The art of modelling lies in knowing which components to include in the model: the goal of 
the modeller is to include only those components which have a significant influence on the 
output of the system. It is important to realise that the accuracy of model predictions depends 
on which components are included or excluded, the validity of any assumptions made about 
them and the accuracy of modelling of the interactions between them. Modelling is indeed a 
mixture of science and art, but because modelling is a quantitative discipline it can appear 
entirely scientific and ‘real’. 

Haywood and Haywood (2002) comment that “modelling, although seemingly 
objective, should be seen as being a subjective activity in which the world-view of the 
modeller is an integral part of the process”. 
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Dent and Blackie (1979) also say, “It will never be possible to prove a model ‘true’, 
yet the use of the computer can lead the unwary to accord the results a greater 
degree of precision than is justified. The model may contain undetected flaws, poor 
data transformations and intentional and unintentional biases included by the 
model-builder. All of these can seriously affect the validity of information provided 
by the model.” 

 

Decision makers and their advisers must be aware that “if the model is to be used as an 
additional tool in decision making, the goal and limits of the model should be fully understood 
by the decision maker” (Den Ouden quoted by Graat and Frankena, 1997). 

Since the process of model building can itself be a learning process there is much to be said 
for the idea that the decision makers and their advisers themselves should be involved with or 
interact with the process. This would ensure that the simplifications, assumptions and 
limitations of the model are fully appreciated by all involved in the decision.  

3.4 Data and knowledge with respect to modelling 
Graat and Frankena (1997) point out that data and knowledge are central to modelling. For 
example, if a model of a disease epidemic is to be built then quantitative data would be 
needed from real epidemics on which to base parameter values within the model. Knowledge 
of the disease epidemiology is important so that the components of the model can be put 
together correctly, with the correct interactions. Teclaw (1979) noted that one of the most 
important factors limiting the application of models is the lack of adequate epidemiological 
data. The aspiring modeller may be in one of four situations, as illustrated by the following 
table (modified from Holling, 1978): 

Table 1: Data and knowledge with respect to modelling 

quantity/quality of data  

poor good 

poor (a) Exploratory – hypothesis 
development. 

 

(c) Empirical / analytical – 
hypothesis testing. 

 

 

epidemiological 
knowledge 

good (b) Simplified representation 
of past events with data 
assumptions. 
Guarded predictive use 
(‘what if?’) BUT with 
uncertainty limits. 

(d) Good representation 
(‘simulation’) of past 
events.  
Can be used predictively 
(what if?) IF the future 
is predictable. 

Situation (d) is the best one. With good data and knowledge it should be possible to produce 
high quality models, e.g. flight simulators, models to track the trajectory of missiles. Note that 
these examples of the best models are of systems which operate under the influence of a few 
physical laws. This allows the confident use of such models as predictive tools, e.g. inherent 
in the use of flight simulators to train pilots is the understanding that an aeroplane in ‘real life’ 
would respond to the pilot’s controls in exactly the same way as the simulator responds. 
Biological systems are inherently more difficult to model because their governing principles 
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are more complex and variable. It is therefore extremely difficult to attain the situation 
approaching perfect data and knowledge about a biological system. While it may be possible 
to produce a good simulation of a recorded epidemic it may still be difficult to use this model 
predictively. Especially if there are important factors which determine spread of an epidemic 
which involve human behaviour it becomes difficult to be sure that a real life epidemic would 
always respond to changing controls in exactly the same way as a simulated epidemic does. 
Whether this difficulty of predicting biological events is put down to simple lack of data 
(represented by situation (b)) or an inherent unpredictability of some aspects of behaviour, 
meaning that prediction is difficult even with good data, is a rather philosophical point akin to 
the question of whether the future of the universe could, in theory, be predicted if all physical 
laws were understood. What is important is to realise that even a model which mimics past 
events perfectly should be used with caution as a predictor of the behaviour of a system under 
changing conditions. 

Situation (c) is interesting. When good data are available, but epidemiological knowledge is 
lacking, statistical techniques can be used to see how closely observed data fit hypothesised 
relationships. This process can be seen as analytical modelling (McLeod, 1993), e.g. 
regression of various types. In epidemiology these analytical models increase epidemiological 
knowledge by identifying and quantifying disease risk factors, which can then be included in 
models. This highlights the importance of data and data analysis as a pre-requisite for good 
modelling. Analysis of data allows progression from situation (c) to (d) but situation (d) is 
only attainable from situations (a) or (b) through an improvement in data availability. 
However, modelling can still be useful in the absence of good data (situation (b)), but such 
models should be used with great care. These models would contain much uncertainty 
because input data would be largely based on expert opinion and poor quality field data. An 
important use of such models would be to indicate which data are more important in the 
system, so that data collection activities can be focused more efficiently. 

Currently, FMD modelling perhaps best fits in cell (b). The UK epidemic of 2001 represents a 
potential source of data. Based on this, empirical models of the epidemic may be constructed 
which will help to identify important epidemiological determinants of that particular 
epidemic. However, there are still data gaps, on detailed virology (e.g. survival of virus in 
different conditions, infectious doses by different routes to different species etc.) and on 
disease spread within populations (e.g. the probabilities of different types of contacts between 
animals, and what factors govern these probabilities) which make the production of models 
with truly predictive capacity difficult, if not impossible.  

3.5 Types of model 
There is no agreed classification system for models. Different authors have focused on 
different aspects of models which may distinguish them from each other (see McLeod, 1993). 
For the purposes of this report it is important to recognise that models may differ in three 
important aspects. 

3.5.1 Treatment of variability, chance and uncertain data – stochastic models and 
deterministic models 
Models which assign average, or most likely, values to all parameters and model the average 
or most likely outcome of chance events are termed ‘deterministic’ models. They produce a 
single output or result for each set of input values (scenario). 

Models which include variability and the effect of chance in the method are termed 
‘stochastic’. Because parameter values within the model are allowed to vary and because the 
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occurrence of chance events is randomised, stochastic models must be run repeatedly and 
produce a range of outcomes from the same input scenario. 

Stochastic models, by explicitly including variability and chance, appear to be more realistic 
than deterministic models. This does not mean that deterministic models are unrealistic. The 
important realistic feature of stochastic models is that, given a single intervention in a disease 
epidemic model for example, a range of possible results is produced, reflecting the influence 
of chance events and the variability of nature on the final outcome. This provides decision 
makers with more information than a deterministic model. Figure 1, below, presents a stylised 
example. Imagine a stochastic disease model has been made. The model simulates an 
epidemic which is controlled by stamping-out and one of the outputs recorded is the total 
number of farms culled to achieve eradication. Two different culling policies are simulated as 
policies 1 and 2 – perhaps involving different levels of pre-emptive slaughter. The model 
produces a range of output for each policy because of the element of chance in the infection 
process and variability in model parameters. Figure 1 presents frequency distribution 
histograms for the total number of farms culled in each policy. Say the model had been run 
100 times for each policy, then in scenario 1, 14 runs resulted in 301-400 farms culled, while 
in policy 2, 20 runs resulted in 601-700 farms culled. Results in these two ranges were the 
most frequent in each case and might be the ‘expected’ or ‘most likely’ results calculated by a 
deterministic model. While the ‘most likely’ result for policy 1 may be a better one than 
policy 2, the stochastic model suggests that in some cases a less favourable result is possible 
with policy 1. The cumulative frequencies of stochastic model results can be interpreted as 
predicted probabilities of particular outcomes. Thus, since 33/100 runs of policy 1 produce 
500 or less farms culled, the probability of this outcome is predicted as 0.33. By the same 
token, the probability of 500 or less farms being culled under policy 2 is only 0.25, suggesting 
that policy 1 is better. However, under policy 1, there is a predicted probability of 0.25 that 
over 1,000 farms will be culled (25/100 runs produced this result), while in policy 2 the 
predicted probability of the same outcome is only 0.08. This suggests that policy 1, while 
potentially better than policy 2, is also more risky, i.e. there appears to be a higher chance that 
things could go badly wrong. 

The fact that a stochastic model predicts a range of possible ‘futures’, reflecting the 
unpredictability of real life, means that it must be used with care as a decision support tool. 
Decision makers must not rely on the model to make a decision for them but be prepared to 
use it as part of a process in which other factors, such as the ‘riskiness’ of a policy, are 
weighed. 

It is especially important that decision makers understand that the range of outcomes 
predicted by a stochastic model may also be, at least in part, a reflection of data uncertainty. 
This again means that models cannot always be expected to provide definitive guidance in 
decision making. In the past decisions have often been made in the face of imperfect data, and 
the skills involved in this process must not be forgotten – models must not be seen as a tool to 
produce knowledge without data. 
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Figure 1: Stylised example output of a stochastic model 

In some cases stochastic models can produce a huge range of possible outcomes, particularly 
where the model contains uncertain factors which may be given wide estimates by experts. 
This limits the value of the models in decision making. Medley (2001), commenting on 
model-based predictions of the course of variant Creutzfeldt Jacob Disease (vCJD) says that 
predictions that vary by two or three orders of magnitude are meaningless. That is, the results 
are not helpful as a basis for decision making. In fact, what this situation indicates is that the 
model contains either too much uncertainty, because data are lacking, or the system in reality 
contains so much variability as to be truly unpredictable. 

Another advantage of stochastic models results from the method used to simulate chance 
events. A deterministic model of infection with disease, for example, uses the probability of 
infection to calculate that a proportion of exposed animals will be infected. As the model runs 
over several infection periods a proportion of the remaining susceptible animals will be 
infected in each period. Given that the infection probability is greater than zero there will 
always be some spread of infection in each subsequent period but an ever decreasing part of 
the population will always remain uninfected – i.e. the model cannot mimic an end to the 
process. However, a stochastic model simulates integer numbers of infections and may allow 
zero infections in a period, thus bringing the spread of infection to an end, e.g. if 10 
susceptible animals remain in a population and the infection probability is 0.2 there is a good 
chance that zero would be infected and the infection therefore eradicated. 

3.5.2 Treatment of time 
Models may treat time as continuous or progressing in discrete intervals, e.g. days, weeks, 
etc.. This leads to quite distinct methods by which the model result is calculated. 

Continuous time models use differential equations representing the rate of change of 
parameters within the model with respect to time. Such models are computationally elegant, 
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in that the behaviour of a complex system is crystallised into a few equations which can be 
calculated fairly quickly and produce a graphical representation of the changes in the system 
over time. A set of equations is organised in such a way that the state of the system at any 
future time can be calculated based on the input values of all parameters, but a possible 
weakness of models based on differential equations is the common assumption that 
parameters do not change over time (Thrusfield and Gettinby, 1984). An important 
consideration is that these models also tend to be more difficult for the non-mathematician to 
understand. 

Discrete interval models break time into convenient units. The changes taking place in the 
modelled system from one time unit to the next are then simulated repeatedly over as many 
intervals as necessary. This requires the carrying out of many calculations, e.g. to simulate an 
epidemic over 200 days (where the time unit is one day) requires 200 sets of calculations to be 
done. If the set of calculations for each day is large this can lead to the model being 
cumbersome to run, even with modern day computers. One advantage of this type of model is 
that it is relatively simple to allow parameters to change over time, e.g. complex seasonal 
effects can be modelled. A further great advantage of this type of model is that by breaking 
the simulation down into a series of small steps, the logical framework of the model is usually 
transparent and easier for the non-mathematician to understand. This is particularly relevant 
when models are to be used to support decision making. 

3.5.3 Treatment of space 
Disease models represent the behaviour of disease in populations of animals. In real life those 
animals exist in space. Models may or may not attempt to represent the spatial relationships of 
animals in the modelled population. The first disease models modelled disease in populations 
under the assumption that members of the population were homogeneously mixed, so that 
only the size of the population was important and not the spatial relationships between 
animals. More recently the spatial dimension has been incorporated into models. This requires 
refinements particularly in models of contagious disease such as FMD, when data describing 
the ‘contact structure’ of the population are required. The term, ‘contact structure’, refers to 
the fact that contacts between animals are no longer completely random, but are determined 
by their relative positions in space. 
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3.6 Stages in model development 
The following description of model building is largely adapted from Martin and others (1987) 
and Dent and Blackie (1979). 
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Figure 2: Stages in model building 

3.6.1 Definition of the system and objectives for modelling. 
There must be a clear statement of objectives. Models developed as ends in themselves may 
be of limited use in decision support. The problem to be solved, or the decision to be 
supported by the model must be defined and the detail of information required from the 
model must be specified. The initial specifications with regard to detail may have to be 
modified later on the basis of sensitivity testing or as a result of experience using the model to 
support decisions, i.e. it may turn out that the decision critically depends on a particular detail 
of the system, which must then be modelled in more detail. 
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3.6.2 Analysis of data and knowledge relevant to the model.  
This consists of determining the principal components of the system under consideration and 
their interrelationships. These components and interrelationships are translated into a logical 
model framework on which quantitative data can be pinned. This step represents a learning 
stage which is vital, as it establishes the model structure. Close collaboration between the 
model builders and subject matter experts is important here. 

3.6.3 Model formulation. 
The model framework established in step 2 has to be implemented on a computer. There are 
various techniques available which are described in more detail elsewhere in this report. 
Constraints in model implementation may dictate modification of the basic framework. 

3.6.4 Verification 
Model verification consists of checking that the model is doing what the modeller intended it 
to do. It is the process of checking that the formulae and programming correctly reproduce the 
logical framework conceived by the modeller. This is usually achieved by carrying out 
internal checks within the model. 

3.6.5 Validation 
Whereas model verification checks that a model is ‘true to the modeller’, model validation is 
concerned with checking that models are ‘true to life’. Unfortunately there are no objective 
and universal tests of model validity. However, some common themes are evident in the 
general literature on models, as follows: 

1) Valid models make biological sense: 
Disease modelling should not be carried out in isolation from other branches of epidemiology 
and ‘reality checking’ is an important aspect of modelling. According to Thrusfield (1986) a 
valid model should make biological ‘common sense’. The model should be examined to 
ensure that all the known determinants that influence outbreaks of the disease have been 
included, i.e. does the model include all current epidemiological knowledge about the 
disease? It is also important to determine whether the value of these determinants can be 
assessed with accuracy, i.e. is there sufficient data of sufficient quality to fuel the model? This 
last question is related closely to which situation of the four detailed in table 1 the model has 
been constructed in. If important determinants are missing, or cannot be accurately 
parameterised within the model, then the model’s validity is compromised. 

Similarly, Miller (1976) stated that a model’s mechanisms should be intuitively acceptable. It 
should behave in a biologically and mathematically reasonable way (e.g. it should be 
‘sensitive’ to appropriate variables). 

In other words, it should be possible to explain the outcomes of models according to current 
biological knowledge. This is not the same as saying that a valid model must produce a result 
that was expected beforehand. Model results may appear counter-intuitive at first sight, but as 
Dent and Blackie (1979) point out, model building “forces those concerned with building the 
simulation model to examine the system objectively and consequently undertake a thorough 
and critical review of knowledge concerning the system.” One of the benefits of modelling 
can be that it prompts the development of better understanding of the basic biology 
underlying the system being modelled. 
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2) Valid models mimic real life: 
Spedding (1988) describes model validation as simply establishing whether a model behaves 
sufficiently similarly to the real system being modelled. This involves demonstrating that the 
model gives the same output as the real system over a range of variables. Spedding (1988) 
gives two conditions to be satisfied with respect to this method of model validation: 

1. the model is tested against data not used in its construction, and; 

2. that what is meant by ‘the same output’ is specified in advance. In other words the 
precision and accuracy required of the model must be specified in advance, recognising 
that the real system performance may vary considerably. 

This latter condition is particularly relevant to models of FMD epidemics, which are highly 
variable and rare (in UK). There has to be a decision as to how close to the real epidemic of 
2001 a model has to be, given that 2001 may itself have been an extreme event. The first 
condition is also difficult with respect to modelling FMD, because there is so little data on 
real epidemics that this is usually used in model building and therefore should not be used in 
validation.  

A major problem with validating models against real life is that a model is often constructed 
to simulate scenarios with which there are no real life data to compare. 

According to Dent and Blackie (1979) model validation is an elusive issue. Although the 
agreement between model output and real life behaviour may be tested using statistical 
significance tests, such agreement does not necessarily indicate model validity. Model 
building is an iterative process where refinements are made such that outputs approach 
agreement with measured reality and the simple fact of agreement may result from invalid or 
unjustifiable refinements. As with any scientific hypothesis, it is necessary that the hypothesis 
fits with reality, but this alone is not sufficient to prove the hypothesis because there may be 
alternative hypotheses which also fit reality. This is the issue of ‘identifiability’ mentioned by 
Green and Medley (2002). The key question here is, could the same model output result from 
more than one set of parameters? Although a model may make biological common sense or 
produce a true result when given unrelated data, de Jong (1995) points out that “It is not 
sufficient to show that a model with a particular set of assumptions gives correct predictions. 
Other models, based on very different assumptions may give equally good predictions. A 
careful comparative approach to evaluate the main factors, both implicitly and explicitly 
included in the model, is necessary.” 

Martin and others (1987) suggest that subsections of a model should be validated separately 
prior to validation of the model as a whole, because errors in one section may be compensated 
for by errors in another section. 

3) Valid models should be fit for the use they are designed for: 
Rather than attempting to decide whether models are ‘valid’ or ‘invalid’ it may be better to 
ask whether a model is ‘useful’. Green and Medley (2002) reproduce the quotation, attributed 
to George Box, “all models are wrong, but some models are useful”, and raise the question, 
“how wrong does a model have to be before it is useless?”. It may be better to phrase the 
question, “how valid must a model be to be useful?”. Dent and Blackie (1979) closely link 
confidence in a model with its validity and point out that “the process of gaining confidence 
in the model is a slowly emerging one over the period of model construction, through formal 
validation, to application of the model.” This implies that for the decision makers to have 
maximum confidence in the model they, and their close advisers, should be involved in all of 
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these steps. Given that a model is built to perform a specific purpose, for example to inform a 
decision, Dent and Blackie (1979) suggest two sets of judgements to be made: 

1. that the model is not different from the real system to a degree that will detract from the 
value of the model for the purposes for which it was designed; 

2. that the decisions made with the assistance of the model will not be measurably less 
correct than those made without the benefit of the model. 

The second of these judgements, which must be made ex ante, must be subjective and is 
difficult, but Dent and Blackie note that this may be the most relevant aspect of validation. 

3.6.6 Sensitivity analysis 
Sensitivity analysis has two purposes: 

a) to check the sensitivity of the model’s output to poor quality data – i.e. data about which 
there is uncertainty; 

b) to check the sensitivity of the model’s output to known variability in system parameters. 

Sensitivity analysis is used particularly when the values assigned to model parameters are 
uncertain due to lack of good quality data (situation ‘a’ or ‘b’ in table 1). The values of 
uncertain parameters are varied to see the effect on the final output of the model, i.e. the 
sensitivity of the model to the value of the parameter is assessed. A model which is highly 
sensitive to parameters on which there is little reliable data is of limited use, perhaps even 
dangerous, in decision making. Those values to which the model is sensitive should be the 
focus of data collection efforts if the validity and utility of the model is to be improved. On 
the other hand, if varying a parameter has little material influence on the key outputs of the 
model, uncertainty about the value of that parameter does not detract from the value of the 
model in decision support. 

Finding parameters which are known to vary in real life and to which the output is sensitive is 
useful in a different way, providing direct guidelines for management (Dent and Blackie, 
1979). If these are parameters which could be influenced by disease control activities they 
become ‘critical control points’ which should be monitored and controlled in an outbreak. 

Sensitivity analysis may reveal that a model is more sensitive to a particular parameter than is 
the case in real life, suggesting the model is not valid. This would lead to reformulation of the 
model and revalidation such that the model becomes a more balanced representation of real 
life. 

3.6.7 Use of model in decision support 
The results of the model are combined with other knowledge by the decision maker. New 
knowledge from other sources and also perhaps unexpected results from the model may 
prompt modifications to the model or even a redefinition of the objectives for modelling. 
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4. Modelling and animal health 

4.1 Roles of models in animal health 
Possible reasons for model building have already been discussed in general in section 3.2. 
More specifically, in the field of animal health, models may be useful in the following ways: 

∗  retrospective analysis, 
where good data are available from past epidemics models can be constructed as an aid 
to understanding the dynamics of the epidemic (requires model to mimic a specific 
real-life epidemic) – this understanding can then be utilised in … ; 
∗  contingency planning, 
based on the lessons learned from modelling past epidemics, models can be used to 
answer questions of the type, “what if this had been done differently?” – the answers to 
these questions may justify adjustment of the contingency plans for tackling future 
epidemics (a model which reproduces a range of imaginary epidemics can be used); 
∗  resource planning, 
models of epidemics and their control can be used to estimate the development of 
resource requirements so that these may be planned for – resource planning should be 
part of contingency planning but models may also be useful in the short term during 
‘live’ epidemics to predict the scale of increase in resource requirements in specific 
situations (a model which reproduces a range of imaginary epidemics can be used); 
∗  training, 
models can be used as ‘virtual epidemic simulators’ for training purposes (a model 
which reproduces a range of imaginary epidemics can be used); 
∗  surveillance targeting, 
a specific type of model which attempts to quantify the risk of disease arising in 
different circumstances (risk model) can be used to indicate where it is most crucial to 
target surveillance efforts; 
∗  ‘real time’ decision support, 
during the 2001 FMD epidemic in UK, models were used to support decisions on 
control policies in real time (requires model to mimic a specific real-life epidemic). 
In the rest of this report the appropriateness of using models in such situations will be 
examined through review of specific examples. 

4.2 Types of models in animal health 
As noted above, models may serve different purposes and this means that different models are 
often made to suit a particular purpose. Different models may also be developed which 
concentrate on certain details of animal health. The following list contains examples of types 
of model relating to animal health: 

∗  risk models which describe qualitatively and may also quantify the risk of introduction of 
disease into a population through particular routes (risk pathways); 

∗  analytical models which seek to establish associations between occurrence of disease and 
risk factors; 
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∗  disease models which model the spread of disease in a population; 

∗  population models which model the dynamics of a population; 

∗  economic models which model the production and use of resources and add on economic 
values; 

∗  specialised models for particular details, such as climatic and air flow models to model the 
airborne spread of disease agents. 

The basic principles involved in these types of model will be discussed briefly below. Most 
emphasis is placed on disease modelling. 

4.3 Modelling principles 

4.3.1 Risk models 
Risk modelling firstly identifies and clearly defines a hazard, e.g. the infection of livestock in 
UK with FMD virus. The next step is to elaborate various risk pathways (chains of events) 
through which that hazard may be released. Qualitative risk models stop at this point, or may 
attempt a qualitative assessment of the risk as ‘high’, ‘medium’ or ‘low’. Quantitative risk 
modelling requires the quantification of the probability that the hazard release route will be 
taken at each step of the risk pathway. The overall risk that a hazard is released is then 
calculated by multiplying the probabilities through the steps of each pathway and adding 
together the overall probabilities for all pathways. 

HACCP (hazard and critical control point) is a separate technique which is used to identify 
points in a risk pathway where risk can be controlled by external interventions, and then to set 
up management systems to control risk. 

4.3.2 Analytical models 
These models, which may also be called empirical models (Thrusfield 1986), use statistical 
analyses to quantify associations between disease morbidity and other variables. Their 
purpose is to identify risk factors for disease and they are the usual output of epidemiological 
field studies. 

4.3.3 Disease models 
The models to be discussed here are models of infectious disease. In modelling, distinction is 
made between macroparasitic disease and microparasitic disease (Graat and Frankena, 1997). 
Macroparasites, such as helminths, have significant stages of their life cycle outside the 
mammalian host, and it is often this part of the life cycle which is important in determining 
the dynamics of disease and which must be modelled in most detail. Microparasites such as 
bacteria and viruses multiply within the host and the dynamics of disease depends critically 
on the transfer of microparasites from host to host. Since this report is concerned with the 
modelling of FMD, the basic techniques of modelling microparasitic diseases will be 
discussed. 

Units and population: 
In models of animal disease the smallest unit of concern may be the individual animal or 
groups of animals (herds or farms). Therefore a model may consider disease spreading 
through a population of individual animals, or disease spreading through a population of 
herds. In the following discussion ‘unit’ refers to the smallest unit of concern, whatever it may 
be. 
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States: 
As a starting point for modelling infectious disease, members (units) of the host population 
are considered to exist in one of a number of defined states. At the most simple these states 
are susceptible, infected and recovered or removed, leading to the acronym, SIR model. The 
model describes the movement of units from one state to another. Models can be increased in 
complexity and realism by the definition of further states, such as: infected but not infectious 
(latent); infected and infectious; infected and clinically sick; recovered but carrying infection, 
etc. etc..  

Transition between states: 
Once an unit has become infected, the transition through to the recovered or removed state is 
mostly governed by time factors, which can theoretically be measured in field or experimental 
epidemiological studies. The model may also consider additions to the susceptible state based 
on birth rates and waning of immunity, and removals from the population based on mortality 
rates or culling. The key transition in disease modelling is that between susceptible and 
infected. This transition depends on the modelling of disease transmission. 

Disease transmission: 
Transmission of a contagious disease, such as FMD, is, by definition, through the medium of 
contact. 

In order to model transmission of a contagious disease it is therefore necessary to quantify the 
following key factors: 

- the duration of the latent and infectious periods 

- how many contacts will a diseased unit make per unit of time and hence during the whole 
infectious period? 

- how many of those contacts could potentially lead to infection of a susceptible unit, i.e. 
how many ‘effective contacts’ will there be? 

If the number of effective contacts made by each infected unit was known this could be used 
to quantify the transition of susceptible individuals into infected individuals. This is an 
important concept in contagious disease modelling. The average number of effective contacts 
made by each infected unit would be the number of secondary infections to be expected when 
a single primary case of infection is introduced into a fully susceptible population. This 
number is called the basic reproductive ratio (otherwise known as basic reproductive rate or 
number), R0 (Anderson and May, 1991). 

The concept of effective contacts can be used to calculate the risk of infection among 
susceptible units in a model, which is proportional to the number of infectious units. Models 
must take account of the fact that as epidemics progress, and the proportion of units remaining 
susceptible falls, contacts are wasted on already infected units. This results in the natural 
waning of epidemics in undisturbed populations. Thus, as an epidemic progresses the number 
of secondary infections arising from each infected unit falls. This number is called the 
effective (or case) reproduction ratio, R (Anderson and May, 1991). 

A well known epidemic model based on the concept of effective contacts is the Reed-Frost 
model (Abbey, 1952; Frost, 1976). This basic model has been adapted widely since its 
inception. 

Estimates of the number of effective contacts made by individuals, or R0, are needed in order 
to reproduce disease epidemics in models. Modellers may use field data on infection rates and 
epidemiological tracing data, which link primary and secondary cases, in order to produce 
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these estimates (Haydon and others,. 2003). However, this method requires detailed field data 
which are seldom available and it is common for R0, or similar measures of disease 
tranmission, such as transmission rate or ‘force of infection’, to be derived by fitting a model 
to an observed epidemic (e.g. Haydon and others, 1997; Matthews and others, 2002). 

The basic Reed-Frost model and similar models contain two important simplifying 
assumptions: 

1. that contacts within the population are made randomly, or that the population is 
homogeneously mixing, and; 

2. that infectiousness and susceptibility do not vary between individuals. 

The first assumption may be reasonable for relatively small populations of individual animals 
kept in a group, but even on a single farm animals may be split into management groups 
between which there may be little contact. When a model is concerned with the spread of 
disease between farms the assumption of homogeneous mixing and random contact is harder 
to justify and the limitations such an assumption brings must be borne in mind when 
interpreting the results of such a model. 

The second assumption may also be reasonable for relatively small populations of similar 
units, e.g. only adult dairy cows or only sheep farms, but if output of such a model is to be 
used to extrapolate to bigger, more diverse, populations, again, the limitations such an 
assumption brings must be borne in mind. 

In general, models carrying these two assumptions would tend to reproduce epidemics where 
disease spread is more rapid, more widespread and more random than in real life. In real life 
animals, or farms, do not contact others randomly and in large populations all units cannot 
have access to all other units. There are likely to be more contacts with units closer by than 
those further away and other factors such as marketing channels further modify contact 
patterns. This could lead to local waning (‘burn out’) of epidemics in real life whereas a 
model might predict continuing spread and a large epidemic. 

The second assumption basically implies that there is only one kind of contact between 
infected and susceptible units and that a fixed proportion of these will be effective and lead to 
infection. In real life some types of contact are riskier than others and also some infected units 
may be more infectious than others (e.g. bigger farms containing more infected animals) and 
susceptibility of units may also vary (e.g. farms containing different species or breeds of 
animals). In real life this results in heterogeneous spatial distribution of infection, taking the 
‘line of least resistance’ through high risk contacts between highly infectious/susceptible 
contact pairs. 

Increasing the detail of models: 
In order to avoid the assumptions in the simple epidemic model, modellers have constructed 
models which, to a greater or lesser extent, include additional parameters relating to 
infectiousness and susceptibility and/or reproduce the contact pattern within the modelled 
population. It is important to recognise that this increases the requirement for data and 
knowledge to fuel the models and the feasibility of providing detailed data must be seen as a 
constraint to producing models with ever increasing detail and realism. 

The inclusion of variability in infectiousness and susceptibility in models depends on 
knowledge or assumptions about such variability. This knowledge will most likely come from 
epidemiological field studies and analysis which would identify risk factors for infectiousness 
and susceptibility. The modeller then has to further subdivide the modelled population into 
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different risk groups. Contacts may then be modelled randomly between these risk groups or 
detail may be further increased by modelling different contact rates between different groups. 

When considering the spread of disease within a population of farms, which cannot move 
about, distance between farms is an important determinant of the rate of contact between 
farms. In order to include this aspect, models have to represent the spatial relationships 
between units of the population in some way. Some models make use of geometry or other 
mathematical methods to model simplified neighbourhoods around individual farms while 
others make use of geo-referenced data to reconstruct real populations within a model. 
Contact rates between farms which vary according to distance between them can then be 
modelled. 

A feature of the models which reproduce real populations is that the transitions between 
disease states can be modelled for each unit in the population separately and individually, as 
opposed to a modelling process which considers groups and transition rates between groups. 
This move to modelling at the individual level can make the logic and mathematics of the 
model simpler and more transparent but at the same time the computational load of the model 
is increased. 

Constraints to disease modelling: 
The preceding discussion highlights that in order produce a model of the behaviour of disease 
in a population there are key requirements to be able to quantify the contact patterns within 
populations and also to be able to quantify the factors which make contacts effective contacts, 
leading to disease transmission. The latter of these requirements can be addressed by 
epidemiological studies to identify risk factors for disease spread, but it is unrealistic to expect 
that all risk factors for a disease will ever be fully quantified. The former requirement is a 
more serious constraint. The contact pattern in a population is often unknown and difficult to 
study and record in real life. Furthermore contact patterns can be unpredictable, depending to 
a large extent on human behaviour. Contact patterns can also change in response to an 
epidemic. All of this makes reliable predictive disease modelling difficult. 

4.3.4 Population model 
Population models may be used alone to explore the effects of management and other factors 
on animal production, or to provide disease models a realistic population within which to 
simulate disease. Population models simulate the changes within a population due to births, 
deaths, sales and purchases. The techniques of population modelling are similar to disease 
modelling in that the population is split into groups on the basis of age, sex, type, pregnancy 
status etc.. Transitions between groups and additions to or removals from groups are easier to 
model as these depend on factors such as birth rate, mortality rate, conception rate, sale rate 
etc., which are easier to measure or estimate from field data. 

Disease models where the farm is the unit of interest (rather than individual animals) do not 
require a population model because the population of farms is virtually static. 

4.3.5 Economic models 
Economic models may be added on to disease or population models so that resource costs and 
economic values can be assigned to the output of these models. For example the resources 
required to deal with the number of cases in a modelled epidemic and the economic value of 
disease losses may be calculated. 

In addition economic models may attempt to model wider economic effects, such as the effect 
of changing supply of animal products due to an epidemic on domestic price. 
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4.3.6 Specialised models 
Technical aspects will be discussed along with specific examples. 
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5. Some examples of use of models in animal disease control planning and 
evaluation 
In this chapter some disease and other models will be briefly reviewed. The theoretical 
modelling of disease began at least 50 years ago (Abbey, 1952) and modelling of FMD was 
explored as an aid to disease control planning as early as 1976 (Miller, 1976). In the last 10 to 
15 years, models of various types have been promoted as components of decision support 
systems with the potential to answer ‘what-if’ questions related to disease control strategy. 

Recently the animal diseases Bovine Spongiform Encephalopathy (BSE), Classical Swine 
Fever (CSF) and Foot and Mouth Disease (FMD) have caused serious problems in Europe 
and modelling has been a prominent tool used to aid understanding and policy formulation in 
the fight against these diseases. Various models have been developed for different purposes 
with regard to these diseases, for example, to explore hypotheses on how epidemics 
developed, to attempt to predict the future course of epidemics and to predict the likely effect 
of different control measures. Modelling of these three diseases will be covered in more 
detail. Especially, the modelling of the UK 2001 FMD epidemic, and the influence of 
modelling on disease control policy will be covered in detail in chapter 6. 

5.1 Some examples of early models 
The table covering the next few pages contains examples of disease models developed over 
the recent and not so recent past. The purpose of this is to illustrate the scope of modelling 
and its development. Particular attention is paid to how models have been used in decision 
support for animal health planning. This table represents a small selection of the disease 
models reported in the literature, the list is illustrative rather than exhaustive. It should be 
noted that some entries refer to papers describing individual models whilst others are review 
papers describing several models of other authors. 
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Table 2: Examples of disease models and their use in animal health planning 

Disease Authors Comments Particular use made of model in animal 
health planning / decision support 

Fascioliasis Gibson, 1978; 
Ollerenshaw, 1966; 
Ollerenshaw and 
Rowlands, 1959 

 

These are all empirical (analytical) models which quantify associations 
between disease morbidity and associated variables; namely rainfall 
and temperature, which are easily measurable. 

There is no attempt to simulate the life-cycles of the parasite and 
intermediate hosts, nor is there any need to model disease processes in 
the final host. 

The utility of the models stems from their requirement for easily 
measurable data to produce results. The predictions tend to be accurate 
because the life cycle of the parasite responds in a fairly uniform (i.e. 
predictable) way to climatic factors. 

Forecasting when disease risk may be 
increased so that prophylactic measures 
can be applied tactically (i.e. in response 
to short term changes in disease risk). 

Ovine 
ostertagiasis 

 

Thomas and Starr, 
1978 

 

These are also empirical (analytical) models in which sunshine and 
rainfall are the key parameters affecting the parasite life cycle. 

Predicting when peak pasture 
contamination with infective larvae may 
occur so that prophylactic measures can 
be applied tactically (i.e. in response to 
short term changes in disease risk). 

Nematodiriasis Gibson and Smith, 
1978a,b;  
Thomas 1978 

 

These are also empirical (analytical) models in which soil temperature 
is the key parameter affecting the parasite life cycle. 

 

Predicting larval hatching date so that 
prophylactic measures can be applied 
tactically (i.e. to target timing of 
preventive measures). 

Predicting pasture larval counts and from 
that predicting national incidence (UK). 

Bovine 
ostertagiasis 

 

Gettinby and others 
1979  

 

This is a simulation which models steps in the parasite life cycle, both 
outside and within the bovine host, separately and through several 
cycles. Empirical data are needed to ‘parameterise’ the model, e.g. the 
relationship between adult worm burden and faecal egg output, the 
herbage intake of cattle, establishment rates of larvae etc.. 

Predicting levels of infective larvae on 
herbage and so to facilitate optimum 
anthelminthic use or disease prevention 
by pasture spelling. 



UseofModelsinDiseaseControlPolicy.doc 
 

 29 

Table 2, cont.: Examples of disease models and their use in animal health planning 

Disease Authors Comments Particular use made of model in animal 
health planning / decision support 

Bovine 
ostertagiasis 

Grenfell and 
others (1987) 
Smith and others 
(1987) 

A differential equation model of the parasite’s population dynamics. Ten 
differential equations, some non-linear and some containing step functions, 
represent the influence of host and microclimate factors on the parasite life 
cycle. 

To investigate possible therapeutic and 
prophylactic strategies against the 
disease. 

Vector borne 
diseases 
transmitted by 
Culicoides 
imicola  

Wittmann and 
others (2001).  

This is an empirical model making use of statistically demonstrated links 
between climatic variables and variables derived from satellite imaging with 
abundance of the vector, C. imicola. There is potential to use the model for 
prediction of outbreaks of AHS or blue tongue where these viruses are 
known to occur. 

To identify geographic areas in Europe 
where the climate is suitable for the 
insect vector, which are therefore at 
potential risk of the diseases transmitted 
by this vector. Therefore of potential 
use in targeting disease surveillance. 

Rabies in wild 
fox population. 

Macdonald and 
Bacon, 1980  

The model was a deterministic differential calculus model with several 
components: 
- fox population dynamics – assumptions were made about regular 

seasonal fluctuations; 
- disease component of model – assumption had to made of contact rate 

(related to R0); a range of figures were used in the model that reproduced 
disease patterns and fluctuations similar to those observed; 

- control strategies component (slaughter, temporary sterilization, bait 
vaccination of foxes). 

The model identified that vaccination of foxes offered the best control 
solution compared with slaughter of foxes. 

Note that knowledge of (or assumptions about) the real life population and 
disease patterns was needed.  

The model contained the assumption of homogeneity of mixing within the 
population. This assumption was probably reasonable. However, 
homogeneous mixing is probably more likely in a wild living population 
which responds to natural ‘laws’ than in a farm population subject to human 
manipulation which increases heterogeneity and unpredictability. 

To compare different control and 
eradication strategies.  
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Table 2, cont.: Examples of disease models and their use in animal health planning 

Disease Authors Comments Particular use made of model in animal 
health planning / decision support 

Mass 
vaccination 
against 
childhood 
diseases (e.g. 
measles, 
rubella) 

Nokes and 
Anderson 
(1988) 

This review describes the modelling of childhood diseases using the state transition 
idea with mathematical rate equations to quantify transitions between states. 
Homogeneity of population mixing was usually assumed.  

The authors note that “much of the theory developed to date describes the 
transmission of directly transmitted viral and bacterial infections that induce 
lasting immunity to reinfection … and have relatively short duration”. 

The animal disease rinderpest is directly transmitted, by animal to animal contact 
only, making it directly analogous to measles in humans. FMD can be transmitted 
by many kinds of indirect contact, which introduces another level of complexity 
into its transmission dynamics. 

Describe the calculation of R0 for 
different childhood diseases and the 
phenomenon of ‘herd immunity’ and 
critical vaccination coverage to achieve 
disease eradication. 

Veterinary 
vaccination 
programme 
design 

Woolhouse 
and others 
(1997) 

Describes generally applicable mathematical relationship between R0 and critical 
vaccination proportion. This, and similar models are useful in designing criteria for 
successful vaccination, but they critically rely on knowledge of R0, which is not 
constant for any disease, depending on many factors associated with population 
and livestock management characteristics. 

To provide general guidance on levels 
of vaccination coverage required to 
control or eradicate disease in 
populations. 

Rabies Brochier and 
others (1991) 

The authors applied the basic disease transmission theories as discussed by Nokes 
and Anderson (1988) to set a target for vaccination coverage of 80%. A post 
vaccination survey showed 81% of foxes had taken the vaccine and no cases of 
rabies were found. 

Used a model to calculate proportion of 
foxes that had to be immunised in bait 
vaccination programme to achieve 
eradication. 

Brucellosis Hugh-Jones 
and others 
1976  

This is a stochastic multi-state model. Many parameters had to be based on expert 
opinion, notably infection risks. The model would have been parameterised such 
that it produced infection rates consistent with observed reality. 
The model demonstrated that the optimum frequency for testing was every four to 
six months. The model showed no advantage in testing more than every four 
months. 
It should be noted that this model was not developed in response to policy 
development needs, rather it was an academic exercise which was then used to 
illustrate the potential value of modelling in policy development. 

Model was used to examine brucellosis 
eradication strategies and potentially to 
guide policy on test and slaughter and to 
explore effects of management based 
control policies – e.g. segregated 
calving. 
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Table 2, cont.: Examples of disease models and their use in animal health planning 

Disease Authors Comments Particular use made of model in animal 
health planning / decision support 

Brucellosis England and 
others 2002 

A stochastic within herd model and simple deterministic mathematical model for 
between herd spread. The model was used to evaluate the risk of brucellosis 
spreading from an insertion in a single herd to other herds, under different 
frequencies of testing. The modelling used is simple; i.e. a detailed simulation of 
real life is not attempted. The model contains many simplifications and relies on 
expert estimation of key disease parameters. The aim is to provide a tool to 
examine the consequences of varying testing frequency, not necessarily to pinpoint 
the exact optimum. 

To examine frequency of testing for 
surveillance in a disease-free country. 

Rinderpest James and 
Rossiter 
(1989) 

Rossiter and 
James (1989) 

This was a stochastic simulation model of spread of disease within a population of 
animals. Normal population turnover is included in the model. Spread of disease 
between individuals is modelled in a similar way to the Reed-Frost approach, 
assuming perfect mixing in a homogeneous group of animals. Because of this 
assumption the authors caution against extending the model to multi-herd 
populations. 

The model demonstrated the dependence on population size of the ability of the 
virus to persist in a population. The model also suggested that mild strains of the 
virus could become established in populations with low levels of immunity (e.g. 
resulting from inefficient vaccination). 

Note that rinderpest is spread only by direct, reasonably close, contact between 
animals. There is no spread by carriage of virus on fomites, as with FMD. This 
makes this a simpler disease to model because assumptions about perfect mixing of 
the population are more easily justified. 

To examine the effects of different 
vaccination policies on the behaviour of 
the disease in populations. 
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Many of the earliest models of specific animal diseases (as opposed to ‘general’ epidemic 
models) were of macro parasitic diseases such as fascioliasis and ostertagiasis. Reasons why 
these diseases may have attracted modelling attention may include: 

∗  the existence of good data and knowledge about the lifecycles of the parasites involved; 

∗  the existence of demonstrable and predictable associations between measurable 
determinants (often climatic factors) and the parasite life cycle; 

∗  the lack of need to simulate the contact pattern within the host population; the models 
usually deal with disease in a single population of co-grazing animals; infection is picked 
up from the pasture and contamination is passed back to the pasture in a predictable way 
to act as the source of infection for other animals; transmission of disease is via the 
pasture, all members of the population have equal access to the pasture, so there is in 
effect perfect mixing of the population. 

Similar considerations apply to microparasitic diseases which are vector transmitted, where 
the life cycle of the vector is sensitive to climate/environment and transmission of disease is 
via a large vector population. 

Earlier models of microparasitic diseases tended not to attempt to model heterogeneous 
contact patterns. They mostly modelled the spread of disease within populations where perfect 
mixing was assumed. These models are useful in learning general lessons about the ‘natural 
behaviour’ of epidemics. The vast amount of work on modelling of childhood diseases led to 
the important concepts of herd immunity and critical vaccination thresholds to prevent 
epidemic spread of disease. These concepts were easily applied to animal diseases, for 
example the rinderpest model of James and Rossiter (1989).  

A major challenge in the way of development of disease modelling was to include 
heterogeneity of the population and to simulate the ‘contact structure’ within the population; 
i.e. to take account of the fact that the population is made up of different individuals and 
contacts between some individuals are more likely than others. In the human field this was 
particularly important in modelling, for example, sexually transmitted diseases and in the 
animal health field this challenge is faced by any model which attempts to simulate spread of 
disease between farms, rather than between animals within a defined, homogeneously mixing 
population. 

5.2 Modelling of FMD before 2001 
Teclaw (1979) drew attention to particular difficulties associated with modelling applied to 
FMD. He noted that, “the fact that not all spread is due to direct contact but may be due to a 
common source (e.g. garbage, feed) and fomites compromises models based on assumptions 
of homogeneous mixing.” 

The ability to predict the course of an epidemic, by whatever means, also depends on the 
extent to which random chance plays a role in the disease epidemiology. 
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Teclaw (1979) also noted, “the ‘chancy’ nature of any epidemic spread, especially in 
the early stages when the number of infected animals is relatively small, detracts 
from the usefulness of a deterministic model. It is the early part of an epidemic when 
generalising from data based on large numbers to a small number of initial 
infectives has the least validity, and this is also the time of greatest interest to those 
attempting to control the epidemic. Once the epidemic becomes large enough to 
allow the use of parameters based on averages, it may be too late to use the model in 
decision making strategies.” 

Teclaw uses this as an argument for use of stochastic models, which take account of the 
chance element. But there is still the problem that early in an epidemic a model would have to 
be run with parameters based mainly on data from previous epidemics, and therefore the 
outputs of such a stochastic model would include a wide range of uncertainty. 

It could also be argued that models of disease other than FMD are easier to validate and 
therefore can be used with more confidence. This is because validation relies heavily on 
checking that a model behaves like real life in all conditions (e.g. under different treatment 
regimes). With parasitic diseases it is easy to test models with controlled experiments and 
there is also plenty of field data on the disease in different conditions. Field data are also 
abundant for childhood diseases such as measles. But it is not possible to test control 
measures against FMD in controlled conditions. At best, comparisons can be made between 
often very different real life scenarios. Field data are available from only a small number of 
FMD epidemics in non-vaccinated populations. All of these epidemics are different and 
unique, making the data of less value in model validation. 
Previous to 2001, the UK suffered a large FMD epidemic in 1967-68. This event, and the data 
resulting from it, stimulated efforts to model epidemic FMD (e.g. Tinline, 1972), and to use 
these models in contingency planning. 

An early example of FMD modelling is given by work carried out by Miller (1976). The aim 
of that model was to simulate a ‘worst case’ scenario of spread of FMD across the USA, 
assuming that disease entered the marketing system and became rapidly established in a 
majority of states, and then to assess the effect of different additional control policies. The 
model was a deterministic, non-spatial state transition model. The spread of FMD through 
large populations of herds or premises was modelled. The modelling of disease spread used a 
parameter termed ‘dissemination rate’, which represents the average number of herds to 
which virus is delivered by an infectious herd during each time step of the model. 
Dissemination rate is similar to the ‘effective contact rate’ used by Reed-Frost type models, 
and the model was similarly formulated to account for the possibility of a susceptible herd 
receiving multiple contacts. The dissemination rate itself had to be estimated based on data 
from the 1967-68 UK outbreak. Dissemination rate was not constant during the 1967-68 
epidemic, but decayed exponentially. Miller attributes this decay to the effects of traditional 
control measures, farmers changing their behaviour and the depletion of ‘easy’ targets, i.e. 
farms which are somehow more vulnerable to infection. He used a decreasing dissemination 
rate in his model, but chose a starting dissemination rate higher than calculated for the UK 
1967-68 epidemic so that a ‘run away’ epidemic ensued. 

In the model it was relatively easy to include control measures such as slaughter of affected 
herds, contact (pre-emptive) slaughter and vaccination because the effects of these policies 
can be represented by moving herds between the states already defined in the model. 
Vaccination was represented by moving herds from ‘susceptible’ to ‘immune’ states. Pre-
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emptive slaughter was represented by moving a chosen percentage of infected herds directly 
to the ‘removed’ state without passing them through the ‘infectious’ state. The method by 
which infected herds could be identified for pre-emptive slaughter in real life, and the degree 
of ‘overkill’ of falsely identified contacts was not considered by the model, rather its purpose 
was to demonstrate the overall effect of contact slaughter which somehow achieved pre-
emptive removal of a certain percentage of infected herds. Miller notes that while it is also 
theoretically possible to represent market closures, quarantine etc. in the model as a reduction 
in the dissemination rate, it is difficult to quantify the relationship between such measures and 
the dissemination rate, and so these were not modelled. 

Using the model, Miller concluded that a ‘runaway’ epidemic could occur in the USA, given 
dissemination rates slightly greater than those recorded in the UK 1967-68 epidemic. Such an 
epidemic could affect at least 60% of susceptible herds within 30 weeks and if traditional 
control measures were abandoned (i.e. no slaughter of affected herds) and vaccination was not 
used, further epidemic cycles would begin after another 60 weeks. The model illustrated the 
beneficial effects of contact (pre-emptive) slaughter and suggested that pre-emptive removal 
of 19% of potentially infectious herds could reduce an epidemic similar to that in the UK in 
1967-68 by half. It is worth noting that a degree of contact slaughter was carried out in the 
FMD epidemic in the UK in 1967-68 and slaughter of so-called ‘dangerous contacts’ was part 
of the control policy from the beginning of the epidemic in UK in 2001. 

More recently, Haydon and others (1997) used a discrete time, state-transition model to 
generate a set of estimates of the transmission rate of FMD between herds in the 1967-68 UK 
epidemic. The basic reproduction number, R0, could be directly derived from transmission 
rate. The estimated transmission rate had high values over the first few days, corresponding to 
an R0 of 38.4, but the value rapidly declined, corresponding to a value of R0 of 2.0. The early 
high values are consistent with the view that unusual meteorological conditions produced 
exceptionally good conditions for wind-borne spread of the virus over the first few days. The 
authors concluded that prophylactic control measures, such as vaccination, would have to be 
extremely effective to prevent epidemics with the higher R0 value.  

Howard and Donnelly (2000) used a stochastic, discrete time, mechanistic model, based on 
the method of Haydon and others (1997) to similarly estimate the ‘force of infection’ (= ‘rate 
of transmission between infectious and susceptible farms’) during the 1967-68 UK epidemic 
and an epidemic in Taiwan during 1999. The resulting models were then used to quantify the 
effects of delays in slaughter of infected farms. This was achieved by expressing ‘force of 
infection’ in units per day of the infectious period of an infected farm. Thus, the transmission 
of disease could be modelled for different scenarios in which infected farms were slaughtered 
at different times after infection. The modelling demonstrated the importance of reducing 
slaughter delays in FMD epidemics. It was estimated that same-day-as-diagnosis slaughter 
could have resulted in a 60% reduction in the scale of the Taiwan epidemic. 

The models of Miller (1976), Haydon and others (1997) and Howard and Donnelly (2000) 
were all state-transition models in which the population of farms was assumed to be 
homogeneous, i.e. all equally susceptible and equally infectious following infection. The 
models did not attempt to represent the spatial arrangement of the population or any 
heterogeneity in the contact structure of the population. 

Sanson and others (1994) introduced an explicitly spatial model (InterSpread) which had been 
developed over a period of time as a component of a comprehensive decision support system 
(EpiMAN – Sanson, 1993). The system is described concisely by Sanson and others (1999). 
This decision support system had been developed for New Zealand to assist national disease 
control authorities to contain and eradicate outbreaks of animal diseases as efficiently and 
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cost-effectively as possible. It was designed primarily to be used during real epidemics. The 
specific objectives, when designing the system, included provision of facilities to: 

∗  provide up to date status reports that facilitate decision making (i.e. a variety of reports 
which directly addressed the information needs of decision makers); 

∗  achieve optimisation of manpower, and other, resource allocation; 

∗  evaluate the relative merits of technical decisions (i.e. predictive modelling to assist in 
choices of control strategy). 

The whole system is a combination of databases, expert systems, various simulation models 
and statistical analyses to monitor the state of the epidemic. Some of the components of 
EpiMAN are as follows: 

∗  Simulation of virus spread off an IP. This component uses field data gathered from 
individual IPs during an epidemic, such as: on farm prevalence of affected animals; age of 
lesions; reported contacts, etc.. These data are linked with models which predict possible 
airborne spread (using meteorological data) and non-airborne ‘local’ spread. Farms at risk 
of infection can then be identified so that surveillance visits, or other action, can be 
organised and prioritised. 

∗  Expert systems. Essentially a series of logical rules to prioritise the most urgent tracings to 
be done so that manpower allocation can be optimised. 

∗  Dissemination rate model. The estimated dissemination rate (EDR) is defined as the 
number of cases in a week divided by the number of cases in the previous week (Miller 
1979). If the weekly EDR is falling the model can extrapolate forwards to predict the 
cases expected in future weeks and the end of the epidemic by log transforming EDR and 
fitting a linear least squares regression line. This method was validated against data from 
the 1967-68 UK epidemic. 

∗  Epidemiological reports. Designed to provide insights into the epidemic and the 
effectiveness of control measures. Reports could summarise such things as: sources of 
infection for each IP to build up a picture of methods of transmission; analysis of relative 
risk of different types of contacts which may help to identify those dangerous contacts to 
be subject to pre-emptive slaughter. 

∗  The InterSpread (inter farm spread) model. The main reason for including this model in 
the whole package was so that the likely consequences of major policy options could be 
explored in advance. The model is used to predict the progress of an epidemic under the 
influence of different control policies, by running so-called ‘what if’ simulations. For 
example, pre-emptive slaughter options or vaccination options could be explored. 

Sanson (1993) describes the specific roles of the different modelling tools within EpiMAN 
thus: “the simulation of virus spread off farms addresses the core purpose of EpiMAN to 
identify farms that are likely to have been exposed to infection, so that resources can be 
focused on these farms; in contrast the InterSpread model does not attempt to identify which 
actual farms will be infected but is used to indicate the pattern of outbreaks that are likely to 
occur. InterSpread is therefore a medium to long term planning tool, aimed at providing 
decision support for major control strategy decisions.” Sanson highlights the importance of 
integrating the model with the database containing the real-time data of the epidemic so that it 
can pick up the state of the epidemic at any time and simulate forwards. 

In contrast to models already discussed, the InterSpread model is an explicitly spatial model. 
This means that the ‘real life’ farm population is represented ‘in microcosm’ inside the model. 



UseofModelsinDiseaseControlPolicy.doc 
 

 36

This requires data on the farm population which includes location data (as geo-referenced 
points or polygons). Like in a state-transition model, farms may be in one of several states 
with respect to disease. The model is initialised by setting the states of farms known to be 
infected or depopulated to represent the real status at anytime during a real epidemic. 
InterSpread has to predict a number of farms which are infected but as yet unknown 
(incubating or undiscovered disease) at the time of initialisation. The model can then be run to 
simulate the continued progress of the epidemic. 

The model treats time as a series of discrete steps, typically days. On each day the model runs 
through the list of infected farms and simulates disease spread off each infected farm. The 
effects of control measures on the status of farms are also simulated. The simulation is 
repeated for as many days as required. 

InterSpread attempts to simulate the spread of disease in a quasi-realistic way. Rather than 
using data from real epidemics to estimate overall dissemination or transmission rates, 
InterSpread separately deals with known routes of disease transmission according to 
epidemiological knowledge. This makes the model more reliant on detailed data, much of 
which has to be estimated on the basis of limited true measurements combined with expert 
opinion. However, this approach means that parameterisation of the model is less reliant on 
‘fitting’, using limited data from an unfolding epidemic. ‘Fitting’ can tend to produce models 
which ‘self-fulfil’, i.e. they are fitted to the real data so their output, of course, matches 
reality, which can give the models a false illusion of validity. By explicitly reproducing the 
known epidemiological mechanisms, according to current knowledge, InterSpread can be 
used to test that knowledge by comparing the model output with real life. Any divergences 
may then show where current knowledge is flawed. The model typically deals with the 
following methods of disease spread: 

∗  animal movement; 

∗  vehicle movement, specifically milk tanker movement between dairy farms; 

∗  ‘local spread’ – i.e. non-specified spread within a short range (excluding airborne); 

∗  airborne; 

∗  recrudescence of infection on emptied farms after restocking. 
Disease spread by the different routes is modelled using probabilities. These probabilities are 
difficult to ascertain but default spread parameters have been derived from analyses of past 
epidemics, particularly the 1967-68 UK epidemic. The model uses a Monte Carlo process to 
produce stochastic output, i.e. each time the model is run, different farms will be infected, 
according to chance. 

Control policies which affect the different methods of disease spread can be explicitly 
simulated in the model. Movement controls affect spread by movement, stamping-out of 
infected farms cuts short the period during which infected farms act as a source of infection 
and pre-emptive slaughter or vaccination protects farms from becoming infected (they move 
to depopulated or protected states – both non-susceptible). 

Since the early 1990’s, the InterSpread model has been adapted as a tool to explore control 
policies for other diseases, including Classical Swine Fever (CSF), Infectious Bovine 
Rhinotracheitis (IBR) and paratuberculosis (Johne’s disease) – see below for further 
discussion. InterSpread was also modified to incorporate EU control strategies (Donaldson, 
1996).  
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5.2.1 Airborne spread models 
The importance played by airborne spread of FMD virus during the FMD epidemic in the UK 
in 1967-68 (Northumberland, 1969) led to the development of models which aim to forecast 
airborne spread of FMD virus from infected farms. These models can be used to identify 
farms at risk of infection by airborne virus during real epidemics. An aerosol dispersion 
model was used to predict the Isle of Wight outbreak in 1981. When FMD occurred in pig 
farms in Brittany, the model correctly identified the risk of virus transport across the English 
channel. A dairy herd was infected, and following clinical diagnosis was slaughtered (Gloster 
and others, 1981; Gloster and others, 1982; Donaldson and others, 1982). 
Several model systems have been developed over the years. Donaldson and Alexanderson 
(2002) review models developed in England, Denmark, France and Spain and discuss the 
operational use of such models and the field data required to run them. Models have been 
developed to predict spread over short distances (<10km) or distances of several hundred 
kilometres.  

A Danish model (Sorensen and others, 2000) was used to retrospectively examine the 
possibility of airborne transmission of disease from France to UK in 1981 and Germany to 
Denmark in 1982. The model uses a combination of a virus production model (VPM) and 
atmospheric dispersion model (Rimpuff), model of spread of airborne particles over several 
hundred kilometres. 

During the FMD epidemic in UK in 2001 the UK Met Office used a short distance model 
which was virtually unchanged from that developed in the 1980’s. The model was calibrated 
and compared with the Danish model and gave similar predictions. 

The UK Met Office have also developed a long range atmospheric dispersion model, called 
NAME (Ryall and Maryon, 1998). This model was also used in the 2001 epidemic to identify 
farms potentially at risk from airborne infection (Donaldson, 2002; Gloster and others, 2003). 
The NAME model has the advantage that it can easily make use of many sources of 
meteorological data, both real and projected (forecast model derived). It is a general purpose 
model which is maintained and continuously developed by the Met Office to handle work on 
forecasting the dispersion of any pollutant in the atmosphere, e.g. ash from volcanic eruptions, 
leakages resulting from chemical or nuclear accidents. Given the location coordinates of FMD 
infected animals the NAME model can calculate the likely dispersion of airborne virus from 
that location over any distance. This model now supercedes the short range model, which will 
not be developed further (Gloster, pers. comm.).  

All these systems rely on several components in order to identify farms at risk of infection by 
airborne virus: 
1. a virus production model, which quantifies the amount of airborne virus produced by the 

infected farm and requires data on virus production by different species and the period of 
excretion; 

2. a meteorological component which models the movement of air in the locality, based on 
available meteorological data and possibly also topographical information; 

3. parameters describing the survival of viable virus in the air; 

4. parameters describing the minimum infectious airborne dose for different species of 
livestock; 

5. demographic data describing the locations of surrounding farms and the species of 
livestock present. 
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Also, for operational use, it is clear that good field epidemiological data are needed from the 
infected farm (prevalence of infected animals of different species, lesion ages etc.) in addition 
to good meteorological data. 

Components 1 and 4 rely on virological research for data. Component 2 is provided by the 
general purpose dispersion models developed by meteorologists.  

The survival of virus in the air, component 3, depends on measurable air parameters. Decay of 
virus viability over time is not modelled in detail. Since airborne carriage of virus happens 
over a short time scale, e.g. 12 hours for the virus plume from Brittany to cross the English 
Channel, the models simply ‘decide’ whether virus in the air would survive or not. The 
critical factors are temperature (virus survives well at less than 27oC) and relative humidity 
(virus survives at over 60%) but there may be other relevant factors such as pH and pollution 
factors, collectively termed the ‘outside air factor’. 

Donaldson and Alexanderson (2002) note that further research is still needed to provide data 
on amounts of the different strains of FMD virus produced by different species. This, and 
other areas of research needed to refine airborne spread models are discussed later (section 
7.3.4). 

5.2.2 Risk assessment models 
As an example of risk assessment work on FMD, Gallagher and others (2002) carried out an 
estimation of the risk of importation of foot-and-mouth disease into Europe. The assessment 
was made using expert opinion through a formal workshop technique, during a meeting of the 
Standing Technical Committee of the EUFMD in 2000. The researchers felt that gathering 
information based on expert opinion through the workshop method used provided useful 
information in a cost-effective way when hard data were not available, or would be expensive 
and logistically difficult to collect. 

The experts considered that the Balkan group of countries was most at risk among the 
European group, and of the non-European source groups (i.e. countries acting as a potential 
source of infection to Europe), Turkey was considered the most likely source of infection. 
Although the Islands group of countries (including UK) was considered least at risk of having 
a primary outbreak, the experts were 90% certain that the number of outbreaks in this group 
would be between zero and two between 2000 and 2005, and that the most likely source 
would be illegal import of animal product (Gallagher and others, 2002). 

A report of the work was circulated to all Chief Veterinary Officers in the EU and led to the 
adjustment of contingency planning in some countries (Marion Wooldridge, pers. comm.).  

It is suggested that, even though hard data may be lacking, the regular assessment of risk by 
this kind of activity can help to focus surveillance and protection activities and prevent 
complacency, i.e. countries can be alerted to emerging potential risks and maintain and update 
contingency planning accordingly. 

5.3 Modelling Classical Swine Fever in The Netherlands 
In 1997, the Netherlands suffered a huge epidemic of classical swine fever (CSF), with 
estimated total financial losses of US$ 2.5 billion. The epidemic was tackled using traditional 
stamping-out slaughter of infected herds (429 herds) and movement controls. Pre-emptive 
slaughter (of 1286 herds) was also used. In addition to the 1.8 million pigs slaughtered by 
stamping-out and pre-emptive slaughter, 9.2 million were slaughtered for welfare reasons 
(pigs unable to be marketed due to movement restrictions). Dijkhuisen (1999) describes how, 
shortly after the epidemic, the Dutch disease control authorities as well as the parliament 
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asked for an evaluation of the efficacy of control strategies, including those actually used and 
possible alternatives. Models were used extensively in this evaluation. 

5.3.1 A simple model 
Stegeman and others (1999) used a simple SIR modelling approach (similar to that used by 
Haydon and others, 1997, for FMD) to produce estimates of the infection rate parameter, β 
(average number of herds infected by one infectious herd during one week) and the herd 
reproduction ratio, Rh (average number of herds infected by one infectious herd during its 
whole infectious period – i.e. β multiplied by infectious period in weeks). Essentially, the real 
field data of weekly infection incidence were substituted in the simple SIR model equation to 
derive the value of β for each week of the epidemic. As the analysis specifically modelled the 
transition from the susceptible to infected state, data on infection dates were needed from the 
real epidemic and assumptions were required regarding the timing of the start of the infectious 
period. Definite infection dates, associated with known dates of a single infectious contact, 
were available for only 82 cases. For most (328) of the remaining cases serological data were 
available and dates of infection were derived from that. 

The values of β and Rh decreased over the course of the epidemic. The effect of the gradual 
introduction of different control measures was assessed by estimating β and Rh for five phases 
of the epidemic, the first of which was the period after infection of the first herd and before 
detection of disease in the country. The conclusions of this analysis included: 

∗  the basic EU control strategy of culling infected herds, movement controls and contact 
tracing appeared insufficient to eradicate CSF from regions with high pig-farm density; 

∗  pre-emptive slaughter of contact herds, increased hygiene measures and reduction of 
transport movements associated with welfare slaughter, introduced later in the epidemic, 
were necessary for the control of the epidemic. 

5.3.2 Use of an adaptation of the InterSpread model 
The model used by Stegeman and others was a deterministic, non-spatial model, which 
included the assumption of random mixing. At the same time a spatial and stochastic 
simulation model, named InterCSF, which was based on the InterSpread model developed in 
New Zealand (Sanson, 1993) was also used. InterSpread was adapted for CSF in Dutch 
conditions by Jalvingh and others (1999). The spread of CSF between pig farms was modelled 
using three types of contact spread, plus a ‘black box’ of transmission mechanisms in a 
locality, i.e. ‘local’ spread: 

1. animals; 

2. vehicles; 

3. persons; 

4. ‘local’ spread up to a specified distance (local spread to farms 0-500m and 500-1000m 
from an IP was considered very important in the real epidemic). 

The control measures to be included in the model were: 

1. IP diagnosis and culling; 

2. movement control areas; 

3. tracing; 

4. pre-emptive slaughter (basically neighbourhood culls of premises around IPs). 
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Welfare slaughter was also included in the model. 

InterCSF was calibrated to mimic the real epidemic of 1997, i.e. the probabilities of disease 
transmission by the different routes, which are difficult to quantify from direct measurements, 
were adjusted in the model by ‘trial and error’ iteration such that the median size and duration 
of epidemic from many runs of the model matched the actual epidemic.  

The model was re-run using different control strategy parameters to examine the potential 
outcomes had control been carried out differently. Because this was a stochastic model it was 
run several times (100) for each scenario (taking about 8 hours) and the key outputs were 
summarised as median and 5% and 95% percentiles. The disease model was linked to a 
financial model (EpiLoss) so that the financial consequences of the real outbreak and of any 
adjustments to policy could be evaluated (Meuwissen and others, 1999). 

Immediately following the 1997 epidemic the model was used to evaluate the possible effects 
of various control strategy variations (Nielen and others, 1999). The use of vaccination was 
not investigated at first because this option was ruled out due to the overwhelming negative 
consequences of vaccination on exports. Using the model the Dutch researchers concluded: 

1. That the length of time between introduction of infection and detection of the first case, 
leading to full operation of control strategies, is a critical determinant of the eventual size 
of an epidemic. Reduction of this time delay from the real situation (6 weeks from first 
infection in the country to first detection of disease) to 2 weeks earlier (i.e. 4 weeks from 
first infection in the country to first detection of disease) reduced costs by 20%. The use of 
the financial model to quantify in money terms the potential value of shortening this 
period gives an indication of the funds which could justifiably be used to improve disease 
surveillance. 

2. That consistent use of pre-emptive slaughter from the beginning of the epidemic could 
have significantly reduced the size and duration of the epidemic, leading to an almost 
halving of the total cost. This conclusion, based on modelling, led to the proposal by the 
Minister of Agriculture that pre-emptive slaughter be a standard strategy in future 
epidemics in the Netherlands. 

3. Dutch Parliament was considering reduction of pig herd sizes by 20% and clustering of 
pig farms to leave pig-free corridors (to slow down ‘local spread’). These measures were 
controversial and challenged in courts. Modelling suggested that a notional maximum 
hygiene option (‘biosecurity’), which effectively reduced the risk of local spread to zero 
while keeping other measures as they were in 1997, reduced the cost of the epidemic by 
two thirds. They argued that improvements in hygiene, perhaps stimulated with money 
incentives, would make these industry adjustments unnecessary. 

The use of a financial model along with the disease model was key in the use of modelling to 
influence policy. Arguments for different choices could be made on financial grounds. Also 
the costs of disease and control were split into public and private categories, and this informed 
the debate about who should bear the cost of measures aimed at preventing and/or limiting 
future epidemics. 

Although Nielen and others (1999) found that pre-emptive slaughter of herds within 1,000m 
would have reduced the economic cost of the epidemic considerably, it is important to 
understand the economic importance of welfare slaughter in the Dutch epidemic (and of 
diseases involving pigs in general). The contribution of welfare slaughter to the total number 
of pigs slaughtered during the epidemic and presumably to the total cost of the epidemic was 
huge. This means that any measure which the model predicts would reduce the duration of the 
epidemic significantly would produce a big cost saving, even if the measure itself entails 
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widespread slaughter of pigs. Also, including wide reaching pre-emptive slaughter measures 
in the model would not tend to lead to higher total numbers of pigs culled because in the 
scenarios without pre-emptive slaughter the same farms would eventually be welfare 
slaughtered anyway. Therefore, inclusion or not of pre-emptive slaughter tended not to affect 
how many farms were culled, but only when they were culled. In a different situation, 
perhaps involving different species where welfare culling was not so necessary, the economic 
effect of pre-emptive slaughter may be less favourable. 

Nielen and others (1999) also caution that, “it should be realised that the effectiveness of pre-
emptive slaughter in InterCSF is dependent on the underlying disease spread mechanisms 
(e.g. local spread and contacts)”. The analyses of the CSF epidemic suggested that short 
distance, ‘local’, spread was a very important feature and this was reflected in the modelling. 
In the average results of the basic scenario, 85% of the simulated infections was caused by 
local spread (541/626). Local spread was modelled to a radius of 1,000m because the 
simulated (and real) epidemic took place in one of the most pig-dense areas in the EU most 
infected farms had several neighbours located within 1,000m.  

Comments on parameterisation and utility of the InterCSF model 
The Dutch researchers made some comments on model parameterisation which have general 
implications: 

∗  They note that validation of the total model with data from the real epidemic (as opposed 
to validation of the underlying parameters and mechanisms) leads to problems with using 
the model to explore other scenarios. 

“Because the simulated epidemic was ‘calibrated’ on the size of the real 1997/98 
epidemic, the current outcomes of InterCSF can not be used to predict the absolute 
expected size of a next epidemic in The Netherlands.” (Jalvingh and others, 1999). 

∗  This kind of calibration against a real outbreak also means that the effects of control 
measures in place are implicitly included in the model and it is difficult to get the model to 
simulate the situation had no control taken place. 

∗  They make the case that the underlying mechanisms and effects of control mechanisms 
need to be translated into quantified parameters. 

“We strongly believe that a model such as InterCSF should be validated as much as 
possible on the underlying parameters and mechanisms, and not mainly on the final 
outcome of a real epidemic. However, although a wealth of data seems available, a 
large epidemic such as occurred in The Netherlands is still only one epidemic from a 
range of possible epidemics. Particularly if a model will be used to compare various 
control strategies, it is very important that the underlying mechanisms are modelled 
as correctly as possible based on available knowledge. The comparison of various 
control strategies will always be very dependent on parameter settings of the 
underlying disease spread mechanisms, which in turn are influenced by the control 
strategies.” (Jalvingh and others, 1999). 

∗  The model output is very sensitive to estimates of spread parameters in particular and the 
results should be interpreted with great care. 

The following comments were made on the construction and use of the model in general: 
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∗  The full complexity of the ‘contact structure’ between pig farms was difficult to model. 

∗  The model could be improved by making the time delay to detection more realistic (rather 
than a random effect from a distribution) and by modelling a varying level of infectivity of 
a farm (i.e. in real life the infectivity of a farm builds up over time as the on-farm 
epidemic progresses). This modification has been implemented in InterSpread for IBR 
(Jalvingh and others, 1998; Vonk Noordergraaf and others, 1999). 

It is interesting to note that the InterCSF model included limits on pig rendering capacity, so 
that slaughtering delays will be modelled if too many farms were to be culled and slaughter 
capacity would run out. 

5.3.3 Use of the models by decision makers 
Van Klink and others (1999) describe the evaluation of the outbreak from the point of view of 
the Dutch Ministry of Agriculture, Nature Management and Fisheries. One aspect of this was 
the engagement of the Wageningen University research group to construct a simulation model 
of the outbreak as a tool to evaluate the control of the outbreak. An essential component was 
also the use of a field epidemiology team to gather the data needed to feed the model. The 
Ministry also had teams looking at decision making during the epidemic. These teams found 
that information needed for the planning and execution of control measures and management 
of the control exercise was not always directly at hand and too much time was needed to find 
it. Problems were encountered because databases were not linked up where necessary. Policy-
makers complained about the adequacy of the information provided on which to base policy 
decisions at the central Ministry level. 

Van Klink and others (1999) concluded that, in principle, the InterCSF model, used in the 
present outbreak as an evaluation tool, could be linked to the information system, and 
developed further into an online decision support system.  

Contrary to this latter point, the Dutch have not chosen to develop InterCSF, InterFMD and 
other InterSpread-based models as part of an online system, which may be used to support 
tactical decisions during epidemics. 

Somewhat bizarrely the EU used the evidence of the InterCSF model, that consistent use of 
pre-emptive slaughter from the beginning of the epidemic could have significantly reduced 
the size and duration of the epidemic, to reduce the amount of recompense provided to the 
Dutch government from EU funds, on the grounds that control measures had not been 
optimally implemented. This despite the fact that pre-emptive ‘zonal’ culling was not a 
specified EU control measure at the time (Ed Van Klink, pers. comm.; Mirjam Nielen, pers. 
comm.). This was seen as a negative effect of using the model in evaluation. 

Since the 1997 CSF outbreak the livestock industry, in cooperation with the government, has 
funded model work on IBR and paratuberculosis and this work has guided control policy for 
IBR and paratuberculosos (Mirjam Nielen, pers. comm.). In addition, model work on FMD 
has been used in advice to the Government. For example, Mourits and others (2002) adapted 
InterFMD and used it to examine the control of epidemics arising in areas with different 
livestock densities. In the introduction to this analysis the authors note that during an 
epidemic decisions have to be taken under intense time pressure. Therefore the use of the 
model is seen as a method of providing decision makers with a priori supporting guidelines, 
in this case ‘area specific rules of thumb’ for control measures to be considered in different 
density livestock areas. Mourits and others (2002) concluded that different control measures 
would be justified in different density livestock areas and this idea has been adopted within 
the Dutch contingency plans for CSF and FMD (Mirjam Nielen, pers. comm.). 
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The Dutch have therefore made quite extensive use of disease modelling and in particular 
have demonstrated the flexibility of the InterSpread model as a basis to model other diseases. 
However, regarding the use of such models to support tactical decisions during epidemics, the 
view of those closely involved in this process is that “such complicated simulation models 
should not be used during an epidemic, but in fact between epidemics to be better prepared 
and study ‘what-if’ situations” (Mirjam Nielen, pers. comm.). This means that models may be 
used to study a range of hypothetical situations, in order to provide guidelines for contingency 
planning, but then tactical decisions during epidemics are better based on field data which 
may rapidly indicate which modelled situation is actually being faced. 

5.4 BSE 
When BSE appeared in UK as a novel disease, modelling was used as an adjunct to traditional 
epidemiological investigation, to explore hypotheses about the new disease. A simulation 
model was constructed on a spreadsheet platform to examine the time of onset and duration of 
exposure to the causal agent, the incubation period and the age classes of animals exposed 
(Wilesmith and others, 1988). The fact that it was assumed that no, or very little, animal to 
animal transmission of infection occurred made the disease conceptually simpler to model. 
The model consisted basically of an age-banded population turnover model. Values for the 
unknown parameters (time and duration of exposure and incubation period) could then be 
imposed on the model with the goal of reproducing the observed age and time distribution of 
actual cases. Once fitted to reproduce the case profile to date, the model could be used to 
tentatively predict expected case incidence in coming years, though this was not the original 
intention. Modelling was thus used as an aid to investigation and understanding of the disease. 
Later, another model was used to predict numbers of expected cases for financial resource 
planning (Richards and others, 1993). Modelling the disease process was preferred over an 
empirical curve fitting approach. A simple model predicted incidence of clinical cases each 
month in a simulated cattle population using calculations relying on three input parameters: 
rate of inclusion of infectious agent in the cattle feed; a factor reflecting differential infection 
probabilities in different age groups (e.g. calves assumed to face a higher level of exposure), 
and; the incubation period (represented in the model as a distribution). This relatively simple 
model produced predictions which proved to be remarkably accurate (J. Wilesmith, pers. 
comm.). 

When it became necessary to consider pre-emptive culling policies as an attempt to precipitate 
a quicker end to the epidemic, simple calculation methods based on the known case data 
could be used to identify the most cost efficient method of targeting a cull (MAFF/DEFRA, 
1996). 
Due to the national importance of BSE and its subsequent public health significance following 
linkage with the disease, variant Creutzfeldt Jacob Disease (vCJD), in humans, several 
research groups modelled various aspects of the disease, such as the possible implications of 
maternal transmission, and its possible control by culling strategies (e.g. Donnelly and others, 
1997; Ferguson and others 1997; Ferguson and others 1999; Medley and Short, 1996; 
Anderson and others, 1996). These models do not appear to have directly influenced national 
control policy, rather they form part of the process of scientific exploration to be expected 
when a novel disease emerges.  

A current question to be addressed regarding BSE control is the possibility of adjustment of 
the ‘over thirty month’ rule, by which cattle over 30 months old are excluded from the food 
chain. Modelling will be used to contribute to the debate over this question (DEFRA, 2003). 
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6. Use of models during the FMD epidemic in UK, 2001 

6.1 Key impact of modelling on disease control policy formulation in 2001 
Although mathematical modelling had been used as a tool in veterinary epidemiology for 
many years before 2001, the FMD epidemic in UK that year was the first situation in which 
models were developed in the ‘heat’ of an epidemic and used to guide control policy. Several 
reviews that have already been published describe various aspects of the use of models during 
the epidemic (Green and Medley, 2002; Haywood and Haywood, 2001; Kao, 2002; Lusmore, 
2002). Some of the inquiries conducted after the epidemic also discuss the role played by 
epidemiology in general and modelling in particular (Anderson, 2002; Follet, 2002). The role 
of modelling during the epidemic was also discussed during a workshop hosted by DEFRA in 
May 2002 (DEFRA, 2002). 

The engagement of modelling with the control of the FMD epidemic was not part of the pre-
arranged contingency plan, but came about in an ad hoc way. The ‘Lessons to be Learned’ 
inquiry report (Anderson, 2002) describes how Sir John Krebs, Chairman of the Food 
Standards Agency began speaking to a number of experts in mathematical modelling in late 
February 2001, soon after the epidemic began. An ad hoc meeting, in which the modellers 
discussed the data requirements for modelling of the epidemic, then took place on March 6. 
DEFRA (then MAFF) supplied the data requested on March 13 and four groups of modellers 
began their analysis. 

One of these four groups was led by John Wilesmith, of the DEFRA Veterinary Laboratories 
Agency (VLA), who was working closely with the epidemiology group in DEFRA 
headquarters, Page St., London. This group, assisted by Roger Morris of Massey University, 
New Zealand, was using an adaptation of the InterSpread model. The other three groups were: 
a group led by Mark Woolhouse at Edinburgh University, a group led by Neil Ferguson at 
Imperial College, London; and a group led by Matt Keeling, then at Cambridge University. 
The Edinburgh group also collaborated with the Cambridge group. 

The ‘Lessons to be Learned’ inquiry report (Anderson, 2002) states that the Imperial group 
were furthest advanced at that stage and reported initial findings to MAFF on March 16. 
According to the report, the main advice at that point was that the delay between report of 
disease on a premises and slaughter must be reduced. This advice simply reinforced current 
knowledge and practice (Northumberland, 1968). A meeting between the mathematical 
modellers, the Government’s Chief Scientific Adviser, the Chief Veterinary Officer and 
experts from the Institute of Animal Health and Veterinary Laboratories Agency occurred at 
the Food Standards Agency on March 21 (MAFF, News Release March 23). The MAFF 
News Release of March 23 indicates that model forecasts produced by the VLA, Imperial and 
Edinburgh groups were presented at this meeting. Model outputs, which supported 
conclusions that the epidemic was out of control and that current control measures were 
insufficient to establish control, were presented. The text of the News Release contains: 
“Speedier slaughter of infected animals will help to reduce transmission. But this needs to be 
accompanied by immediate slaughter of all susceptible species around infected farms…”. The 
source of this specific advice, however, is not fully apparent from the summary of models and 
the expert opinion attached to the News Release. The findings of the Imperial group presented 
at the March 21 meeting are not given in the News Release, but, judging by later publications, 
it was this group that specifically advocated slaughter of all susceptible species around 
infected farms (Ferguson and others, 2001a). According to the News Release, the options to 
enhance control given by the Edinburgh group were: early diagnosis and early slaughter of 
affected holdings; and by the VLA group: reduction of tracing time and increased patrols 
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around infected premises, with the optional addition of pre-emptive slaughter of pigs and 
sheep within a 1.5km radius of each IP. 

The bleak predictions of models presented at the meeting of March 21 precipitated a change 
in the management of the disease control efforts. The Government’s Chief Scientific Adviser 
took over the lead role in policy advice and he created the FMD Science Group, comprising of 
representatives of the modelling groups and other FMD specialists. At the same time the 
Government activated the Cabinet Office Briefing Room (COBR) mechanism through which 
the Government responds to civil emergencies. Initially, twice daily meetings of COBR 
would involve 10 Government Departments and representatives of the Scottish Executive and 
the National Assembly for Wales. 

Meanwhile, Professor Roy Anderson of the Imperial group made public statements on the 
Newsnight television programme (BBC 2, March 21) that the epidemic was “out of control”. 
He also referred to “preventative culling” of livestock, saying, “the epidemic would not peak 
for many weeks and it would be five months before foot-and-mouth was eliminated – and only 
then if the government brought forward its preventative cull of livestock”. 

Before the meeting on March 21, referred to above, an extended cull of sheep and pigs within 
3km of infected premises in Cumbria and Dumfries & Galloway had already been announced 
(MAFF News Release, March 15; Hansard, March 15, 2001, column 1200). Clearly, 
extended culling of livestock was being considered as a measure that would be necessary to 
control the epidemic, although details were unclear at that point. Between March 21 and 
March 26, when the first meeting of the FMD Science Group was held, the modellers were 
asked to look at the potential effects of various pre-emptive culling policies. The ‘Lessons to 
be Learned’ inquiry reports that the Government’s Chief Scientific Adviser specifically asked 
the Imperial group to model culling within different radii of infected premises (Anderson, 
2002). 

Following the first meeting of the FMD Science Group, on March 26, a clear statement of an 
extended culling policy was made in the House of Commons on March 27 (MAFF News 
Release, March 27). In addition to the already announced 3km cull, culling of all animals on 
farms contiguous to (neighbouring) infected premises were to be culled (the ‘contiguous 
culling policy’). The Minister of Agriculture said, “All animals (cattle, sheep and pigs) on 
infected farms are to be culled within 24 hours of the infection report. All animals (cattle, 
sheep and pigs) on contiguous farms are then to be culled within 48 hours.” This became 
known as the ‘24/48 hour policy’. 

In the same statement the Minister said, “The key task is to reduce the time between the first 
report of the disease and the slaughter of the herd or flock. Our target remains that this 
should not exceed 24 hours. The epidemiological studies published last week confirmed that 
this is the single most important intervention in controlling the disease. We are achieving this 
in large parts of the country, including Devon in recent days; in Cumbria the high density of 
infection and sheer number of cases has meant that we are not yet achieving that target.” 
(MAFF News Release, March 27). This indicates that the policy-makers were working under 
the impression that culling on infected premises was not yet being carried out with optimum 
speed in Cumbria, where a large proportion of the cases currently were occurring. The 
implication is that model forecasts that achieving this target alone would be insufficient to 
control the epidemic, were important in influencing the decision to adopt the ‘contiguous 
culling policy’ rather than simply continuing to strive for more rapid culling on infected 
farms. 

According to a statement by the Government’s Chief Scientific Adviser made on April 4 
(MAFF, April 4, 2001) the necessity of the contiguous culling policy, in addition to bringing 
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down report to slaughter times, was based on the modelling work. In particular, the briefing of 
April 4 and subsequent briefings refer to the modelled scenarios produced by the Imperial 
group.  

The FMD Science Group continued to meet regularly until November 1, and models were 
refined and further results presented and discussed. In addition to examining refinements to 
the culling policies, models were also used to examine the potential effects of different 
interventions using vaccination. 

The influence of mathematical modelling on disease control policy, in general, and tactical 
decisions, in particular, during 2001 was therefore both substantial and unprecedented. 

In addition to mathematical models of disease dynamics and control, other models were 
utilised during the 2001 epidemic: notably the Met Office’s models to predict potential 
airborne spread of virus from infected farms and risk analysis was used by the VLA to 
provide risk assessments as decision support tools throughout the epidemic. 

6.2 A closer look at the models 

6.2.1 The Edinburgh model 
As the daily number of cases reported continued to increase during the first five or six weeks 
of the epidemic, there was some argument about whether the epidemic was ‘under control’ or 
not. For example, in an editorial article in the March 22 edition of Nature (Adam, 2001) a 
spokesman for MAFF is reported as denying that the epidemic was out of control, pointing 
out that new cases could still be traced back to animals infected during the initial stage of the 
epidemic (before initial detection of disease). The article highlights the disagreement on this 
matter among other experts. It quotes Professor Roy Anderson as stating that the situation “is 
quite clearly not under control”. The reason behind this conclusion was that each infected 
farm was leading to more than one other susceptible farm being infected. Essentially, 
Anderson was referring to the case reproduction ratio, R, and equating a situation of ‘control’ 
with an R value below 1, as explicitly stated by Woolhouse and Donaldson (2001) in a 
commentary in the March 29 edition of Nature. The Edinburgh team worked on direct 
estimation of R from the available epidemic data (Woolhouse and others, 2001). They used 
data provided them by MAFF headquarters epidemiologists. These data included estimated 
infection dates and contact tracing information. Based on these data, the pattern of infectious 
contacts throughout the progress of the epidemic was reproduced. From this, the average 
number of secondary cases infected by each primary case during weekly periods of the 
epidemic could be induced. Their results suggested that the epidemic was brought under 
control (R less than 1) during the two weeks 17-30 March. Though not explicitly stated in the 
text of the brief communication, the fact that this coincided with the introduction of the 
extended culling policies was seen as supportive, though not proof, of the interpretation that 
control of the epidemic was a consequence of the 24/48 hour culling policy (Woolhouse, 
2002a).  

The Edinburgh team are continuing to look at the culling question (e.g. Matthews and others, 
2002) and also continue to work with Keeling and others on a spatial model of the epidemic 
(Keeling and others, 2002; Keeling and others, 2003). 

6.2.2 The Imperial model 
The Imperial group produced a deterministic, state-transition type model based on differential 
equations. Results of an analysis of the first two months of the epidemic were published in 
May 2001 (Ferguson and others, 2001a). In the model, farms within the population could be 
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in one of several states: susceptible; infected but not infectious; infectious but not reported; 
reported; slaughtered (assumed uninfectious). The model did not explicitly represent the 
spatial relationships within the UK farm population. Complex mathematical techniques were 
used to represent local spread of disease (see Kao, 2002, for a technical commentary). The 
mathematical complexity of this model makes it especially difficult for the non-
mathematician to grasp. 

As with the Edinburgh model, the Imperial model was based on the data provided by MAFF 
headquarters epidemiologists. Again, estimates of infection dates and contact tracing 
information were key to allowing the modellers to derive the transmission rates, through local 
and more distant contacts, needed to run the model. Proximity to infectious farms was an 
important risk factor included in the model: “Contact tracing for all FMD-affected farms has 
produced unique data on the spatial scale of disease transmission, clearly demonstrating that 
farms closest to index cases of FMD are at greatest risk of infection. We estimate that farms 
0.5, 1 and 1.5km away from a single infectious farm would have probabilities of 0.26, 0.06, 
and 0.02 of becoming infected.” (Ferguson and others, 2001a). This distance-related gradient 
of infection risk was known as the ‘spatial kernel’, and was a key feature of this and also the 
other, explicitly spatial models. 

The model did not take account of different farm types, but used ‘average’ parameters for all 
farms. Infection to report time was allowed to vary within the model according to the actual 
variation over time estimated from the data. In this first model produced by this group, the 
transmission coefficient, the parameter quantifying the daily rate of spread of infection 
between infectious and susceptible farms, was assumed to be constant except for a drop when 
movement restrictions were imposed on February 23 (Ferguson and others, 2001b). 

The Imperial model was the model most extensively referred to in support of the 24/48 hour 
culling policy (MAFF, April 4, 2001). The results presented in the paper published in May 
2001 (Ferguson and others, 2001a) are indicative of what was presented during the meeting of 
the FMD Science Group on March 26. 

The model predicted a very large epidemic if the key control parameters (report to slaughter 
interval and amount of pre-emptive culling) remained as they appeared to be on March 28. 
The 95% confidence interval for the final size of the epidemic was estimated as 44% to 64% 
of population at risk, assumed to be the approximately 45,000 farms in currently infected 
areas in Great Britain. That prediction implied an epidemic involving from 20,000 to 29,000 
infected premises. The group also fitted the model to data from the Cumbria, Dumfries & 
Galloway area only. Here they found that transmission intensity was higher, giving an 
estimate for the final size of the epidemic in this area of 79% of 5,000 farms, again assuming 
the model parameters remained unchanged from the status quo on March 28. This prediction 
implied an epidemic in the Cumbria, Dumfries & Galloway area involving 4,000 infected 
premises. 

The model suggested that meeting a target of report to slaughter interval of 24 hours on all 
farms would slow down the spread of disease, but the researchers say, “more drastic action, 
such as “ring” culling or vaccination around infection foci, is necessary for more rapid 
control. Culling is predicted to be more effective than vaccination. … The current policy, 
based in part on these analyses, is to cull IP’s (infected premises) within 24hrs of report and 
CP’s (contiguous premises) within 48hrs.” (Ferguson and others, 2001a).  

The model used important assumptions about the infectivity of infected farms. Constant 
infectiousness was assumed from three days after infection until slaughter (for an average of 
eight infectious days). It is not clear how this infectious period coincides with the onset of 
clinical disease on a farm, but the onset of infectivity was assumed to occur before reporting 



UseofModelsinDiseaseControlPolicy.doc 
 

 48

of disease. The model used a parameter, rI, which was the ratio of infectiousness after disease 
reporting to infectiousness before disease reporting. The researchers explored the possible 
consequences of the assumption of constant infectiousness (rI = 1) by running their model 
with rI = 5 (infectiousness after reporting is five times greater than before reporting). 

With rI = 1, the model predicted that achieving the target of culling infected premises within 
24 hours of report from March 31 would result in an epidemic in which 30% of the 45,000 
farms at risk in Great Britain would be culled (i.e. 13,500). In the Cumbria, Dumfries & 
Galloway area only, the same scenario was predicted to result in an epidemic in which 70% of 
the 5,000 farms at risk would be culled (i.e. 3,500). 

If rI was set to 5, then the model predicted that achieving the target of culling infected 
premises within 24 hours of report from March 31 would lead to rapid control, resulting in an 
epidemic in which 5% of the 45,000 farms at risk in Great Britain would be culled (i.e. 
2,250). 

In the final analysis the researchers chose to keep the assumption of constant infectiousness 
and therefore concluded that control measures in addition to rapid culling on infected 
premises were necessary. Quoting from the paper: “Our analysis shows that achieving the 
goal of slaughtering on all farms within 24 hours of case reporting ….. can significantly slow 
the epidemic. However, such improvements in slaughter times fail to reduce R0 below 1 under 
the assumption that the infectivity of farms after disease reporting is at the same level as that 
before (rI = 1), and only results in rapid control if we assume that infectivity increases 
throughout the time from infection to slaughter and hence peaks after the disease is diagnosed 
on a farm (rI = 5). … because data do not exist with which to estimate the infectiousness of a 
farm as a function of time since infection, prudence dictates that … it is necessary to consider 
other interventions. … In this context ring culling or vaccination strategies target infection 
hotspots by reducing the density of susceptible farms in the vicinity of diagnosed farms, 
thereby removing the ‘fuel’ essential to maintaining the epidemic.” (Ferguson and others, 
2001a). 

As indicated in the above quotation, both ring vaccination and ring culling were explored 
using the model. Although vaccination was shown to be effective, it was not considered as a 
viable policy at the time because of the perceived necessity to cull vaccinated animals at a 
later date in order to quickly regain export markets after the epidemic. The model could not 
specifically represent culling on premises contiguous to infected premises but the model 
structure allowed evaluation of pre-emptive culling in areas local to the infected premises. 
Various culling radii were explored, but a 1.5km radius was considered to most closely 
represent a cull of contiguous premises.  
The predicted effects of pre-emptive culling on the epidemic curve were similar for radii of 
1km, 1.5km and 3km, bringing the epidemic rapidly under control with peak incidence of 
around 50 cases per day for the whole of Great Britain and around 30 cases per day in the 
Cumbria, Dumfries & Galloway area only (Ferguson and others, 2001a). 

In the May paper, the researchers drew attention to the possible negative effects of ring 
culling, in terms of total farms culled. They noted that: “Policies can be overaggressive, 
however: a 3km ring cull is predicted to result in more farms being culled to eliminate the 
disease than a 1.5km cull.” (Ferguson and others, 2001a). In the context of ring culling, the 
possible influence of the assumption of constant infectiousness was again referred to. The 
value of rI was seen to effect the ‘trade off’ between infected premises prevented and 
premises preventively culled: “This trade off is more acute if rI >1, where ring culling still 
accelerates the decline of the epidemic but at the cost of a larger cull than rapid index case 
(infected premises) slaughtering alone.” (Ferguson and others, 2001a). The authors point out 



UseofModelsinDiseaseControlPolicy.doc 
 

 49

the need for research to quantify how farm infectiousness depends on time from initial FMD 
infection. It is interesting that in an appended note to the paper the authors report that: “The 
rapid decline in case incidence seen after completion of the analysis presented in this paper 
has given new estimates of rI significantly above 1, though more precise estimation awaits 
availability of detailed data on all slaughter schemes in operation since 30 March 2001.” 
(Ferguson and others, 2001a). 

The same group of researchers carried out a retrospective analysis based on data up to July 16, 
2001 (Ferguson and others, 2001b). The purpose of this analysis was to identify the risk 
factors determining the spatio-temporal evolution of the epidemic and to explore the impact of 
control policies on FMD incidence.  

Three key parameters describing disease spread were targeted for estimation. These are: 

∗  intervention-adjusted R0 (i.e. R0 varied during the course of the epidemic in response to 
speed of IP culling, biosecurity and movement control); 

∗  effective R (R depends on R0 but can be lower, being further reduced by depletion of the 
population at risk as a result of infection and non-IP culling); 

∗  the average daily transmission coefficient per infectious farm, β (this is a component of R0 
but, because it is daily rate parameter, the authors state that it is not affected by speed of 
IP culling). 

These parameters were estimated directly, using field data on IPs, estimated infection dates 
and contact tracing data. In estimating R, and hence, R0 and β, it was necessary to identify the 
source of infection for all IPs. Source of infection was identified with any degree of certainty 
for only a few of the IPs, therefore the researchers attributed sources to IPs using a 
probabilistic method. 

Important risk factors determining these three parameters were identified by the analysis as: 

∗  proximity between IPs and susceptible farms, as described by the spatial transmission 
kernel; 

∗  species present on farms, which affected infectiousness and susceptibility; 

∗  farmland fragmentation (number of separate land parcels in a farm), which affected 
susceptibility. 

These three factors were used to explain the spatial variation in transmission intensity 
observed during the epidemic. Based on the analysis and census data providing information 
on farm density, species farmed and farm fragmentation, coloured maps were produced 
showing the relative risk of FMD spread across England and Wales. These maps identified 
areas unaffected by the epidemic at the time, but which would be at high risk of disease 
spread if disease was introduced.  

The analytical framework used allowed direct estimation of the spatial transmission kernel 
(defined as the “multiplicative relative risk of transmission as a function of distance from an 
IP”). The researchers report that this directly-estimated kernel “differed significantly from that 
previously derived from the infectious contacts identified by DEFRA, with considerably more 
long-distance transmission events being predicted … suggesting that most transmission 
probably occurred through the movement of animals, personnel or vehicles, rather than 
through animal contact or wind-borne spread.” (Ferguson and others, 2001b).  

R, R0 and β, also varied over time. R and R0 fell from initial values of around 4 at the start of 
the epidemic to below on from the week ending April 2. During May, June and July or R and 
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R0 rose slightly to fluctuate generally between 1 and 1.5. β varied in parallel with R and R0. 
The observation of steeply falling transmission parameters during the first month of the 
epidemic mirrors observations of falling dissemination rate or R0 in the early days of the 
1967-68 UK epidemic (Miller, 1976; Haydon and others, 1997). 

As already mentioned, variations in these parameters over time are attributed to changes in 
speed of IP culling, biosecurity and movement control, with R being further reduced by 
depletion of the population at risk. The authors suggest that β is not affected by speed of IP 
culling, but this would only be true under the assumption that the level of infectivity of IPs is 
constant over the whole infectious period. If the level of infectivity increased over the 
duration of the infectious period, then earlier IP culling would reduce the average daily 
transmission coefficient per infectious farm (i.e. β). Despite having noted previously that farm 
infectivity may increase over time (Ferguson and others, 2001a), the analyses and further 
modelling are still carried out with the stated assumption that “infectiousness does not vary 
from the day after infection until the date on which the farm was culled.” (Ferguson and 
others, 2001b). It is noteworthy that, in addition to maintaining the assumption of constant 
infectiousness, the assumed time of onset of infectivity was shifted from three days after 
infection to only one day after infection, which would tend to increase the apparent necessity 
of a pre-emptive cull of incubating farms. 

The analysis allowed the effect of culling policies on the spread of disease to be assessed. The 
researchers conclude that changes in culling policies and their implementation explain less 
than 50% of observed variation in transmission rates, which in turn indicates that effective 
movement restrictions and rigorously maintained biosecurity were equally vital in reducing 
disease spread. This would seem to suggest that the role of the contiguous cull in controlling 
the epidemic was less vital than suggested by the earlier model which led to its adoption. 

This aspect was explored by re-running the original model, which had carried the assumption 
that β was constant, using the time-varying β derived for all Great Britain, Cumbria alone and 
Devon alone. The original model was thus used to explore ‘what-if’ scenarios in which 
different culling policies were applied. Charts illustrating the results suggest that scenarios 
involving IP culling alone, with slaughter delays modelled according to the recorded data and 
with no non-IP culling, would have resulted in reasonably well-controlled epidemics, 
although the model suggests that without non-IP culling the tail of the epidemic would not 
have been controlled and case incidence is shown as increasing dramatically in July. Given 
this IP culling-alone scenario, the adjusted model predicts epidemics affecting about 10% of 
farms in all Great Britain and 30% of farms in Cumbria. These are much smaller epidemics 
than previously predicted (critically at the time when decisions to change policy were being 
taken) using a constant β, for scenarios involving IP culling alone, as already reported above, 
i.e. 30% of farms in Great Britain culled and 70% of the farms in Cumbria, Dumfries & 
Galloway culled (Ferguson and others, 2001a). 

Although the model suggests that without non-IP culling the tail of the epidemic would not 
have been controlled, predictions concerning the tail of the epidemic must be viewed with 
caution. The authors themselves comment that, “stochastic low-probability long-range 
transmission events causing significant outbreaks in new areas are likely to be a central 
factor determining the duration of the epidemic tail … The unpredictability of these factors, 
together with the stochasticity intrinsic to the tails of epidemics, lead us to avoid making 
predictions of the extinction date of this epidemic here.” (Ferguson and others, 2001b). 

Nevertheless, the results of the analyses are presented as continuing to show that “extended 
culling programmes were essential for controlling the epidemic.” (Ferguson and others, 
2001b). In particular, the region-specific modelling is presented as showing that “non-IP 
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culling was much more critical to controlling the epidemic in Cumbria than in Devon, owing 
to the more intense transmission there”. (Ferguson and others, 2001b). 

6.2.3 InterSpread 
During the epidemic, InterSpread was being used to monitor the unfolding epidemic (John 
Wilesmith, pers. comm.; Roger Morris, pers. comm.; Morris and others, 2002). The full 
EpiMAN system had been introduced to the UK previously but its adaptation to the UK 
situation and population of the model with UK farm data had not been carried out due to 
diversion of resources to deal with BSE. However, with an experienced team, the model was 
set up and in use within a week of the start of the epidemic (Morris and others, 2001). From 
the beginning, InterSpread was used to estimate the number, and approximate location, of 
undisclosed IPs at any time – i.e. infected but not yet reported. This could have helped to 
estimate the short term changes in resource requirements as the epidemic grew, but in reality, 
resources at that time were already stretched, so information that more resources were needed 
was not surprising. 

Later in the epidemic, specifically in late March and early April, InterSpread was used to 
examine control policy options. Morris and others (2001) describe the use of the InterSpread 
model in this respect.  

In the model, four methods of disease spread from infected farms were modelled: 

∗  animal movement (in order to represent longer distance spread by fomites, which was 
apparent from the field data, the model allowed a low level of illegal movements to take 
place); 

∗  local spread to nearby farms on fomites and personnel; 

∗  windborne spread; 

∗  spread by dairy-tanker movement. 
As with the other models, assumptions about the start of infectious period are needed. Morris 
and others (2001) mention that, within InterSpread as used in 2001, infectivity starts on or just 
before clinical signs appear and stops when control measures are completed (i.e. the end of 
slaughter), and varies according to both the stage of disease and control measures. Both of 
these characteristics (onset of infectivity and variability of infectivity over time) are therefore 
different from the other models, where infectivity is assumed to begin soon after infection and 
several days before reporting of disease, and infectivity is assumed to be constant during the 
whole infectious period (Ferguson and others, 2001a; Ferguson and others, 2001b; Keeling 
and others, 2001). 

InterSpread is a very detailed simulation model which attempts to represent transmission of 
disease by specific contact routes and also include the effects on transmission of differences 
between species and other farm level factors. The model therefore includes many 
epidemiological parameters. Morris and others (2001) list 54 epidemiological parameters and 
19 control strategy definitions. It should be noted that, although this may seem a large number 
of epidemiological parameters, this number (54) actually includes many variations of the 
same parameter used for different farm types (Roger Morris, pers. comm.). Parameterisation 
of the model can be simplified by aggregating some of the farm types. Many of these 
parameters were assigned values based on data from the 1967-68 epidemic and a review of 
the literature, although the parameter governing the tendency for airborne spread was reduced 
to reflect knowledge about the behaviour of the 2001 epidemic. In addition to the 
demographic data required to populate the model, data on the infected premises up to the start 
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date of the simulation was required. As with other models, InterSpread requires infection 
dates of IPs, and these had to be estimated in many cases, based on average incubation 
periods. 

The work reported by Morris and others (2001) consisted of examinations and comparisons of 
different control policy options. The model was used to predict the temporal and spatial 
evolution of the epidemic for 200 days beginning from the status quo on April 10, 2001.  

The different control strategies modelled were: 

∗  culling IPs within 24 hours of report and different intensities of pre-emptive culling on 
premises surrounding IPs within 72 hours (within the model, pre-emptive culling was 
conducted radially from each IP to achieve different pre-defined levels); 

∗  culling IPs within 48 hours of report and different intensities of pre-emptive culling on 
premises surrounding IPs within 72 hours; 

∗  vaccination alone, which entailed stopping IP culling and establishing, vaccination bands 
across the country to ‘fence in’ the affected areas which are left to burn out; 

∗  combination of slaughter and ‘damping down’ vaccination in heavily infected areas 
(Cumbria +/- Devon +/- Gloucestershire). 

The effectiveness of different strategies was assessed in terms of: 

∗  number of farms infected; 

∗  mean time to eradication (if achieved within 200 days); 

∗  proportion out of five simulations in which eradication was achieved within 200 days. 
In comparison with the analyses carried out by Keeling and others (2001), the conclusions 
reported here were based on relatively few (only five) separate runs of the stochastic model 
(Keeling and others used 50 to 100 runs per scenario). However, this was considered 
satisfactory in the circumstances because the model’s behaviour was reported as being 
relatively stable and the outcomes of the model were judged by expert opinion to be 
representative of likely real-life behaviour (John Wilesmith, pers. comm.). It was felt that 
using more runs would have reduced confidence intervals but not materially changed the 
conclusions. When used as a policy evaluation in ‘peacetime’ (not during an epidemic) many 
more runs would be done, as when used by the Dutch to evaluate the CSF epidemic of 1997-
98. 

The conclusions (Morris and others, 2001) were that a vaccination alone strategy was 
untenable and that adding vaccination to a slaughter policy made only a slight (positive) 
difference to control of the epidemic and would be risky in view of uncertain trading 
consequences and high cost. The model demonstrated the necessity of culling infected 
livestock quickly, with one simulation in which slaughter on IP’s was delayed for 48 hours 
and negligible pre-emptive slaughter was carried out (as happened early in epidemic) 
producing ‘run away’ epidemics. The model predicted optimal control of the epidemic if 
slaughter on IP’s was achieved within 24 hours and an average of between 1.1 and 1.4 
premises were pre-emptively culled per IP. Increasing the ratio of pre-emptive to IP culling 
further produced only slight reductions in the number of farms infected. Total farms culled 
during the simulated epidemics is not reported, but presumably increasing the ratio of pre-
emptive to IP culling would lead to an increase in this total if only a slight reduction in the 
number of farms infected results. 
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Throughout the epidemic, InterSpread was used on a daily basis to monitor the progress of the 
epidemic (Morris and others, 2002). The model was run to give regularly updated predictions 
of the overall size, duration and spatial extent (in the form of graphic contour map output) of 
the epidemic. InterSpread was also used to provide short term (0-14 day, 14-28 day) 
predictions of spatial spread of disease. These predictions were specific, in that if the model 
suggested disease would move to a certain place, it generally did, but not very sensitive, in 
that the model could not predict all location s to where disease spread (Morris and others, 
2002). The model was therefore partially useful as an early warning system. InterSpread was 
used as a tool to explore ‘what-if’ scenarios so that the risk associated with emerging 
situations could be assessed and illustrated using the model. Being a spatially explicit model, 
InterSpread could be used to examine developments in specific geographic areas, such as the 
potential for disease spread from the Settle cluster and to pig-dense areas south of Thirsk. 
InterSpread modelling conclusions also coincided with field observations that the continued 
spread of disease south of Penrith was largely being mediated by movement of people or 
animals (represented in the model by increasing the level of mid-range illegal animal 
movements). This provided support for the introduction of improved biosecurity measures in 
the area (so-called ‘blue boxes’ in which movement of farm traffic was intensively targeted 
by the authorities), which finally brought the epidemic to a close. This latter scenario is an 
illustration of how InterSpread is an interactive tool which assists in understanding the field 
situation. At the time, in mid-May, InterSpread was predicting rapid extinction of the 
epidemic, and yet cases continued at a regular rate (3.5 per day) (Morris and others, 2002). 
This indicated that there had been a change in the real environment, and adjusting parameters 
in the model to achieve a fit could suggest what those changes were. 

Since 2001 InterSpread has been used to simulate the FMD epidemic in South Korea in 2002. 
As InterSpread plus, the model is being upgraded with a more friendly user interface and the 
ability to be easily adapted to different diseases, with different epidemiological 
characteristics. There is currently a large project to establish InterSpread plus, fully integrated 
with the EpiMAN disease data management system, in Switzerland. 

6.2.4 The Cambridge/Edinburgh model 
Keeling and others (2001) published details of this model in early October 2001, although the 
model had been developed and demonstrated in meetings of the FMD Science Group earlier 
in the epidemic. The published article represents a retrospective analysis of the epidemic up to 
August 2001 in which the possible effects of different control policies on the course of the 
epidemic were examined. The model was also used to predict the likely end of the epidemic. 

The model is a spatially explicit, stochastic, individual farm based model. The model was 
populated with geo-referenced real farms on the basis of the UK census data of 2000. In 
common with standard epidemic models, farms are classified as susceptible, exposed, 
infectious or culled. A susceptible farm can catch disease from any infectious source, after 
which it is classified as exposed. In contrast to the InterSpread model, this model did not 
attempt to mechanistically represent different modes of disease transmission. The model 
related the probability of infection passing from an infectious to a susceptible farm to the 
distance between them (the ‘spatial infection kernel’) and the species and number of animals 
on the two farms. The spatial infection kernel was quantified based on the contact tracing data 
provided by MAFF. The relationships between species and number of animals on farms and 
the relative susceptibility and transmissibility of farms was quantified by using statistical 
methods to fit the model to the observed epidemic data. 

From a starting position, in which the initially infected farms are seeded in the population, the 
model simulates progress of the epidemic in single day steps. The probability of infection of 
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each susceptible farm in the population is calculated each day and a Monte Carlo procedure is 
used to ‘decide’ whether or not infection actually takes place. Culling of infected premises 
and pre-emptive slaughter on other premises, according to actual or modelled policies and 
delays, are also stochastically simulated each day, moving premises from the infectious to 
culled state, or from the susceptible or exposed to culled state. As with InterSpread, the model 
will produce different outcomes each time it is run, and so many runs (50 to 100) of each 
scenario were carried out and the results were averaged. 

As with the other models, this model simulated the transitions of farms from the point of 
infection to slaughter. Assumptions about the infection dates of the initially seeded infected 
farms were therefore necessary. More critically, assumptions about the time intervals spent in 
each state following infection were also required. The model used assumed values for these 
intervals, as follows (Keeling and others, 2001): 

∗  infection to onset of infectivity – mean value of 4 days used; 

∗  infectious but not yet reported – mean value of 5 days used; 

∗  reporting and slaughter (still infectious) – 1 to 4 days (this time decreased during the 
epidemic). 

Infectivity was considered to be constant throughout the infectious period. The researchers 
acknowledged the possibility of a within-farm epidemic, which would result in an increase in 
an infected farm’s infectivity over time. However, they felt that “there is no evidence for such 
a buildup from the data - the rate at which secondary cases are generated is approximately 
constant throughout the infectious period.” (Keeling and others, 2001). Therefore, this model 
was parameterised with constant infectivity, as were the Imperial models, but in contrast to 
the InterSpread model. 

In addition to examining different control strategies, the model was used to estimate a value 
for R0 for each farm in the population (based on the determinants of disease spread used in the 
model; namely, farm density, species mix and herd sizes in the locality). The average 
R0values for all farms within 10km squares were colour coded and displayed on a map 
(Keeling and others, 2001 – supplementary material). This map highlights areas at highest risk 
of disease spread, should disease be introduced and is similar to the relative risk map 
produced by Ferguson and others (2001b), although based on different determinants. Kao 
(2002) points out some areas of disagreement between these two maps, which would warrant 
further investigation. 

The model was used to examine the effect of different culling and vaccination policies. 
Various permutations were explored producing the following key conclusions. A scenario in 
which culling was carried out only on infected premises, with the observed slaughter delays, 
produced an epidemic of a similar order predicted by the Imperial model in a similar scenario 
(Ferguson and others, 2001). Results indicated that if only infected premises were culled the 
epidemic would have infected around twenty thousand properties. A scenario in which the 
observed levels of pre-emptive culling are carried out, but in which the 24 hour (IP cull) and 
48 hour (pre-emptive cull) targets are met from the beginning produced epidemics about half 
the size of the actual in terms of both number of infected premises and total premises culled. 
A scenario in which high levels of pre-emptive culling, similar to those achieved later in the 
real epidemic, are carried out, but with the observed slaughter delays, produced epidemics 
about half the size of the actual in terms of number of infected premises but about three 
quarters the size of the actual in terms of total premises culled. 

Two vaccination strategies were modelled: vaccination within a 3km ring around IPs and 
‘barrier’ vaccination carried out in a 90o radius to 5 –10km in the direction of the highest farm 
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density from an IP. The addition of vaccination to all culling policies produced a slight 
reduction in the size of the epidemic. The model suggested that vaccination was not an 
equivalent alternative to pre-emptive culling, because the predicted epidemic, when 3km ring 
vaccination was used in combination with the IP culling only strategy, was far greater than the 
actual epidemic.  

When the model was used to predict the end of the epidemic, a highly variable result was 
obtained. This was as expected, due to the unpredictable influences of stochastic transmission 
events during the tail of epidemics. The results were therefore presented as probability 
distributions. Two scenarios were modelled: one in which pre-emptive slaughter continued at 
the (reduced) level current at the end of July and one in which the level of pre-emptive 
slaughter was raised back to the maximum level achieved in mid-April. In the first scenario 
the model predicted a greater than 95% probability that the epidemic would continue beyond 
September, and a greater than 50% probability that the epidemic would continue beyond 
December. In the second scenario the model predicted a greater than 50% probability that the 
epidemic would continue beyond September (the last IP of the real epidemic was reported on 
September 30). 

In the supplementary material to the published paper, the researchers comment on some of the 
uncertainties within their model. In particular they mention the quantification of the spatial 
infection kernel based on the MAFF tracing data, expressing concerns similar to those of 
Ferguson and others (2001a; 2001b); “The contact tracing is probably biased towards short-
distance infection, which may cause a similar bias in transmission kernel.” (Keeling and 
others, 2001). The accuracy of quantification of the spatial infection kernel would be expected 
to have considerable influence on the predicted effectiveness of neighbourhood culling 
strategies at controlling the epidemic, as the researchers themselves note; “it is crucial to 
quantify the spatial infection kernel or, at least, relative contributions of local and non-local 
spread.” (Keeling and others, 2001), and in a later paper on the same model; “in terms of the 
total number of farms affected by the outbreak, wide diffuse kernels would mean that CP 
culling is an inefficient strategy as the infection is far less localised on the neighbouring 
contiguous farms.” (Keeling and others, 2003). 

Also of concern was the potential influence of over-reporting of cases (i.e. false-positive 
confirmations); “The over-reporting of the true number of cases was largest (up to 25%) 
shortly after the peak of the epidemic; this would lead us to over-estimate the reproductive 
ratio, R, of the disease and hence over-estimate the effectiveness of the control measures 
necessary to limit it.” (Keeling and others, 2001). It should be noted that it was around and 
just after the peak of the epidemic when pre-emptive culling began to attain high levels, so the 
effectiveness of this measure in particular may have been overestimated.  

Since the end of the epidemic, this model is being further developed to examine novel 
vaccination strategies (Keeling and others, 2003). 

6.2.5 Other models 
Airborne spread models 

Airborne spread models were not used specifically to support major control policy decisions. 
They were, however, used in at least two ways during the epidemic. 

Early on in the epidemic the NAME model was used to identify the direction and extent of 
potential airborne spread around early cases (Donaldson, 2002). This allowed early local 
surveillance and case searching to be correctly targeted. 



UseofModelsinDiseaseControlPolicy.doc 
 

 56

The airborne spread models were also used to examine possible epidemiological links 
retrospectively. Essentially this allowed epidemiologists to establish whether airborne spread 
was a possible route of infection to be considered among any other potential epidemiological 
links, and furthermore, whether it might be considered the most likely route. For example, the 
use of an airborne spread model, with expert meteorological interpretation, has identified the 
possible airborne spread of infection across the Solway Firth from an early IP near Longtown 
to several dairy farms on the north Solway coast (Gloster and others, 2003). Piecing together 
the contact links in the ‘epidemic tree’ is an important step in understanding the dynamics and 
method of spread of the epidemic. 

The NAME atmospheric dispersion model was also used to assess (retrospectively) the 
chance that disease could have been spread from open pyres used to destroy carcases of 
infected animals (Gloster and others, 2001; Champion and others, 2002). It was concluded 
that this was a very unlikely cause of infection, where IPs occurred downwind of pyres, in the 
cases studied. 

Risk analysis 

During the 2001 FMD epidemic many risk assessments were carried out to support decisions, 
mainly to change rules, e.g. on movement restrictions, footpath closures etc. (Scudamore and 
Harris, 2002). Most of the FMD risk assessment and risk modelling was carried out by the 
Department of Risk Research at VLA. 

The VLA Department of Risk Research became involved from the first week of the epidemic. 
Initially they were asked to look at risks associated with movements of vehicles and people 
(following the national ban on movement of livestock). Throughout the epidemic the 
Department was asked to assess risks associated with such things as access to the countryside 
and country activities, infection of wildlife species, movement of animal products, different 
types of licensed animal movements and movement of infected carcases for disposal (for 
fuller list see appendix 2). Most, but not all, of these risk assessments were qualitative rather 
than quantitative. 

The major reasons why the majority of the risk assessments were qualitative were threefold: 
lack of useful data, lack of time (urgency), and the fact that often identifying and explaining 
the risk pathways was a much more important output than numerical risk. Like disease 
models, quantitative risk models require detailed data, particularly on such things as the 
amounts of virus in different excretions/secretions of infected animals, virus survival in the 
environment and infectious doses. Although some data on these aspects of FMD 
epidemiology exist, it took time to gather it together, and sufficient detail to make a 
meaningful quantitative risk model was lacking. 
Qualitative risk assessments provided a logical and uniform framework for decision making. 
Greater value was seen in describing the risk pathways than in trying to provide quantified 
risk estimates, which would have wide confidence limits. By carefully describing the pathway 
through which a hazard (e.g. spread of FMD infection) is released it was possible to identify 
risk reduction methods; that is, possible interventions along the pathway that might manage 
the risk. Qualitative risk assessments were therefore used to support decisions to allow certain 
activities under certain conditions, or, alternatively, to prohibit activities because no practical 
risk reduction measures were identified. 

A small number of quantitative risk assessments were carried out. An example is work carried 
out retrospectively to assess the probability that animals on actual IPs downwind of specific 
pyres used to burn infected carcases may have been infected as a result of the pyres (Jones 
and others, in press). The quantitative risk estimates produced by this analysis were 
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interpreted qualitatively; that is, the probability of the pyres causing infection was considered 
‘low’ and, taken together with the fact that premises nearer than the IPs to the pyre (where the 
risk estimate was higher) were not infected, the researchers concluded that it was unlikely that 
pyres were a source of infection for IPs. 

Since the 2001 epidemic, the VLA Department of Risk Research has continued to work on 
FMD. Currently, a project, commissioned by DEFRA, is underway, the aim of which is to 
monitor and annually review the risks and consequences (economic and otherwise) of 
incursion of OIE list A, and some list B, diseases. The primary purpose of this is to provide a 
framework for prioritisation, so that surveillance, risk reduction measures and preparedness 
(contingency planning) can be more effectively targeted. 

A separate piece of work has been undertaken to analyse the risk of incursion of FMD into 
UK livestock. The original purpose was to describe in detail the various risk pathways leading 
to the release of the hazard (clinical FMD in UK livestock). A quantitative approach was 
chosen, not because it was envisaged that a useful quantified estimate of risk could feasibly 
be produced, but in order to identify where critical uncertainty in data exists. As with 
qualitative risk analyses, the main purpose was to identify the individual steps in the risk 
pathways and where practical and effective risk reduction measures could be applied. Despite 
huge data uncertainties identified in the risk pathways, leading to estimates of risk with wide 
confidence limits, there has been the temptation to use the quantified estimate of incursion 
risk as a forecast of the frequency of future primary outbreaks. This serves as an illustration of 
the potential misuse of the outputs of quantitative models, where often it is the disciplined 
process of quantitative modelling which has most instructive value, rather than the actual 
numerical output. 

6.3 A closer look at the validity of the models and their use to inform decision making 

6.3.1 Reviews already published 
Kao (2002) produced a predominantly review of the different modelling approaches and 
techniques used. He gives a very clear description of the methods used in the various models. 
With respect to the use of models to examine control policies, Kao notes that culling policies 
were relatively easy to incorporate in the models. However, he points out a lack of inclusion 
of logistical considerations and the difficulty of incorporating the effects of non-culling 
policies, which would affect the transmission parameters, in predictive models. Specifically, 
Kao says, “The difficulties associated with estimating resource limitations and including non-
culling control policies such as biosecurity changes that alter the transmission kernel lead 
one to question the value of making detailed quantitative predictions for alternative policies. 
What is more useful is the insight they give us into the important parameters, helping us to 
identify bottlenecks in control policy.” (Kao, 2002). The clear implication is that the 
quantitative predictions produced by models early in the epidemic should have been viewed 
with caution, because they did not take into account the effect of non-culling policies which 
changed over time. Evidence that the transmission kernel was changed by non-culling policies 
as the epidemic progressed is provided by the retrospective analysis of Ferguson and others 
(2001b), involving the fitting of a time-varying transmission parameter. 

In conclusion, Kao (2002) reminds the reader of three established roles for modelling: 

∗  to assist in the development and evaluation of disease control policies; 

∗  to infer the value of parameters or behaviour (by fitting models to field data) that cannot 
be evaluated experimentally; 
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∗  to provide short-term prediction – e.g. immediate effects of changing policy, but, Kao 
warns, “no simulation, no matter how complicated, is just like real life”. 

Summing up, Kao remarks, “In the end all theoretical models are only one aspect to 
providing good scientific advice, augmenting experimental investigation and the good 
collection and analysis of epidemiological data.” (Kao, 2002). 

Lusmore (2002) made a written presentation to the Royal Society of Edinburgh inquiry into 
the FMD epidemic in Scotland. She severely criticised the quality of the data and the data 
management systems in MAFF/DEFRA and therefore calls into question the advisability of 
using models based on poor data in a predictive capacity. She compares the model outputs 
with what could be achieved by “traditional methodology”, such as simple calculations on the 
field data and mapping, and suggests that these methods would have been better. She also 
points out that modelling could have been usefully applied to the management of logistics. 

Green and Medley (2002) provide a more philosophical review of the use of mathematical 
modelling. Rather than examining the 2001 FMD models in detail, they deal with the types of 
question which models should and should not be used to answer. They suggest that models 
are best suited to dealing with ‘generic’, rather than ‘specific’, situations, i.e. models are made 
using complete epidemic data (retrospectively), and then used to explore ‘what if’ scenarios to 
provide general insights into the relative merits of different strategies. The implication is that 
the use of models to provide specific tactical advice early in a real epidemic, as during 2001, 
was not a wise use of modelling – the particular problem being that high-quality data required 
to produce a predictive model were not available at the time.  

Haywood and Haywood (2002) present a brief evaluation of the use of the models to 
determine control policy in 2001. These authors held a particular view that vaccination should 
have been used as part of the control strategy. Although they provide a comparative account 
of the different models used, their main criticism is that the vaccination strategies explored by 
the models were not the most practical vaccination alternatives, and other strategies should 
have been evaluated. Similar criticism about the choice of vaccination strategies explored 
using the InterSpread model was expressed in letters to the Veterinary Record by Sumption 
(2001), Sutmoller (2001), Boardman and others (2001) and Wood (2001). 

6.3.2 Validity of the models 
As already discussed, there is no easy test of a model’s validity. The critical issues to consider 
have been listed in section 3.6.5. as: 

1. valid models make biological sense; 

2. valid models mimic real life, and; 

3. valid models should be fit for the use they are designed (and used) for. 

The extent to which imprecisely estimated input parameters affect a model’s output 
additionally, should be subject to sensitivity analysis. 

It is not the intention here to undertake an exhaustive analysis of the validity of the various 
models used in 2001. However, a limited exploration of some of these issues is presented in 
order to establish that the validity of the models as used could be questioned. 

Issue 1: Valid models make biological sense; 

One of the assumptions carried in the Imperial and Cambridge/Edinburgh models was that 
infectivity of an infectious farm was constant from the time of onset to end of slaughter. 
Several experts in FMD epidemiology feel that this assumption is unrealistic. It is felt that, 
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contrary to what is asserted by Keeling and others (2001), a ‘within farm epidemic’ does 
occur and therefore farm infectivity will increase as the number of clinically affected animals 
on a farm increases. It is accepted from experimental studies that maximum virus shedding by 
infected animals normally occurs at the same time as clinical lesions appear, 5 to 14 days after 
infection (Alexandersen and others, 2002). Work on dairy farms in Saudi Arabia (Hutber and 
Kitching, 1996; Hutber and Kitching, 2000) and in experimental infections (Hughes and 
others 2002) do indicate that within farm prevalence does increase over time and so the 
amount of virus being shed will also increase over time in the first few days of a clinical 
infection on a farm. This would suggest that the infectivity of an infected farm would increase 
over time. It would normally be expected that disease would spread between livestock on a 
farm producing a distinctly non-linear profile of overall farm infectiousness over time. It was 
also commonly experienced in the field during the 2001 epidemic that a single animal with 
old lesions could be found in an infected herd, along with several animals with fresher lesions, 
i.e. the single animal would have been infected first and been the source of infection for the 
others. If not culled that day, the field veterinarians would then find several more animals 
with lesions on the next day; that is, development of a within farm epidemic was clearly 
visible. It would seem logical that the infectious challenge presented by a farm would be 
increasing as the number of animals with fresh lesions (i.e. shedding virus) increased, 
especially since the time when vesicles are rupturing, i.e. around 2 to 3 days into the clinical 
phase, is when the greatest amounts of virus are liberated into the environment (Alex 
Donaldson, pers. comm.). Alexanderson and others (2003) report on contemporary 
investigations of outbreaks early in the epidemic of 2001, in which estimates of airborne 
excretion of virus from infected farms were made. These clearly indicate that virus excretion 
increased over time from first infection to slaughter. 

The sensitivity to this assumption of the Imperial model’s conclusion that IP culling alone 
could not control the epidemic was tested by varying the parameter, rI, which was the ratio of 
infectiousness after disease reporting to infectiousness before disease reporting (Ferguson and 
others, 2001a). As reported in section 6.2.2., it was found that running the model with rI = 5 
(i.e. approximating to a situation with a within farm epidemic) produced a result in which IP 
culling alone could control the epidemic.  

The Imperial and Cambridge/Edinburgh models also assumed that infectivity of an infectious 
farm began very soon after initial infection. This was also a point of contention between the 
modellers and the veterinary experts in FMD epidemiology. Analyses of sensitivity to this 
parameter are not mentioned in the published papers so far reviewed, but the issue is touched 
on in the Royal Society Inquiry (Follet, 2002, sections 6.12 to 6.16). It could be expected that 
if any disease is modelled where infection is transmitted before clinical signs appear, and 
therefore before any IP culling can take place, then the model would suggest that prevention 
of disease spread and control of the epidemic would be impossible without pre-emptive 
culling. Conversely, if the model allows only limited disease transmission to occur before 
clinical signs appear (i.e. infectivity may begin just before clinical signs and build up 
gradually to high levels), then it would be expected that the model would show control of the 
epidemic to be possible by rapid IP culling alone. 

The first-hand experience of veterinarians on the ground was that infection was not rapidly 
spreading off IPs to contiguous premises. Many of them disagreed with the CP culling policy 
that was implemented; namely on stock on all premises with a common boundary with an IP, 
regardless of the nature of the boundary or the distance between livestock, sometimes many 
days after the original IP had been culled (see submissions to the various inquiries, e.g. 
Wardrope, 2002). 
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The intention here is not to argue for any particular view, but to point out that whether the 
models made ‘biological common sense’ or not, was disputed, and that there were 
uncertainties about key model parameters that could be expected to substantially influence 
conclusions about control policy. 

With reference to biological sense, Thrusfield (1986) points out that it is also important to 
determine whether the value of the determinants included in the model can be assessed with 
accuracy; that is, are there sufficient data of sufficient quality to fuel the model correctly? All 
the mathematical models described in section 6.2 required infection dates of IPs that had to be 
estimated according to assumed incubation periods. More critically, the implicitly or 
explicitly spatial models all required contact tracings data to quantify a spatial transmission 
kernel. A definite source of infection was established for relatively few of the IPs in 2001. 
According to Gibbens and Wilesmith (2002), out of a total of 2,026 IPs, a definite source of 
infection was only identified for 101 IPs (5%), and early in the epidemic the number of 
sources identified would have been lower. In the absence of a definite source, it was common 
practice to attribute the source of infection to the nearest possible candidate IP. Therefore, as 
the modellers themselves commented (Ferguson and others, 2001b; Keeling and others, 
2001), the tracings data would be biased towards short distance transmission. Indeed, 
Ferguson and others (2001b) found that estimating the spatial transmission kernel by 
retrospectively fitting a model to the epidemic data produced a wider kernel than that derived 
from the tracing data provided by MAFF. The significance of this is that a model with an 
unrealistically narrow kernel (i.e., where most disease transmission is over short distances) 
would tend to overestimate the efficiency of a local pre-emptive culling policy (e.g. CP 
culling). 

Anderson and others (2001) reported other problems with data quality in oral evidence to the 
Royal Society Inquiry. In particular they mention deficiencies in the demographic farm data 
and a four-week delay in supplying culling data. 

Issue 2: Valid models mimic real life; 

All modelling groups claim that their models were able to reproduce the course of the 2001 
epidemic with reasonable accuracy. However, the level of proof of validity this provides is 
compromised by the fact that some of the models were parameterised using statistical 
methods designed to provide a fit to the real data (Ferguson and others, 2001b; Keeling and 
others, 2001). 

Throughout the epidemic it was widely reported that the various models produced similar 
outcomes, therefore supporting their validity. However, not all models produced conclusions 
about control policy that were alike in every detail. The InterSpread model suggested that IP 
culling alone would fail to control the epidemic only when slaughter was delayed to 48 hours 
after reporting. Culling IPs within 24 hours did control epidemics simulated in InterSpread, 
though addition of non-IP culling did improve control. 

The first Imperial model and the Cambridge/Edinburgh model both predicted huge epidemics, 
with the order of 20,000 infected premises, in case no non-IP (pre-emptive) culling was 
carried out. However, when the Imperial model was re-run using a time-varying transmission 
parameter, which had been fitted using the actual epidemic data, much smaller epidemics are 
predicted in IP culling only scenarios. These later predictions are taken to suggest that CP 
culling was less critical to controlling the epidemic than had been concluded from the earlier 
modelling exercise (Ferguson and others, 2001b). This would suggest that the early Imperial 
model and the Cambridge/Edinburgh model differ from real life in the fact that they both 
overestimate the necessity of CP culling to control of the epidemic. 
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There is evidence from the epidemic itself that the disease could be controlled without high 
levels of pre-emptive culling. Figure 3, below, suggests a temporal link between the onset of 
high levels of pre-emptive dangerous contact (DC) culling and the decline of the epidemic. 
During and after the epidemic it has been frequently said that pre-emptive culling was 
essential to control the epidemic (Ferguson et al., 2001a) and was responsible for doing so 
(King, 2001; Woolhouse, 2001).   

However, figure 4, showing the epidemic and culling curves for Cumbria alone, shows that 
the epidemic in Cumbria had peaked before culling intensity, and in particular CP culling, 
increased. Indeed, compared with other affected areas, relatively little DC culling was carried 
out in Cumbria, where almost half the IPs in the epidemic occurred. During the period up to 
mid-May, in which the main part of the epidemic raged across northern Cumbria, the total 
number of non-IP premises depopulated was hardly greater than the number of IPs (Fig. 4), 
and yet the epidemic peaked and waned over a very similar time course to the epidemic in the 
rest of the country (Fig. 3), where culling of DCs vastly outnumbered IPs. The conclusion 
resulting from the modelling, that rapid and complete IP CP/DC culling was necessary for 
disease control and eventual elimination, appears contrary to the experience in Cumbria. 
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Figure 3: IP and culling data for all GB, during the 2001 FMD epidemic 
Key: Numbers of infected premises (IP) are counted by date of first lesion and premises on which pre-
emptive culling took place as a result of being ‘dangerous contacts’ (DC) are counted by slaughter 
date. Totals are plotted for each week of the epidemic. Note that culled contiguous premises (CP) are 
a subset of the total DCs. 
Source: Chart supplied by Nick Honhold, DEFRA Surveillance Division. 
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Figure 4: IP and culling data for Cumbria ONLY, during the 2001 FMD epidemic 
Key: Numbers of infected premises (IP) are counted by date of first lesion and premises on which pre-
emptive culling took place as a result of being ‘dangerous contacts’ (DC) are counted by slaughter 
date. Totals are plotted for each week of the epidemic. Note that culled contiguous premises (CP) are 
a subset of the total DCs. 
Source: Chart supplied by Nick Honhold, DEFRA Surveillance Division. 

 

In conclusion, although the models may have been able to reproduce the epidemic 
approximately as it occurred in 2001 (and to some extent this was achieved by ‘fitting’ model 
parameters retrospectively so that the model outcome matched the real events), the models’ 
conclusions about the importance of pre-emptive culling may not be ‘true to life’. The models 
suggested runaway epidemics in the absence of high levels of DC/CP culling and this did not 
happen in Cumbria. A possible reason for this divergence would be that the models used 
assumptions about infectivity and estimates of the spatial transmission kernel that would 
favour rapid and uncontrollable spread of disease if pre-emptive culling was not carried out 
(see discussion above).  

In other words, the models were fitted to reproduce the actual progress of disease, with the 
levels of pre-emptive culling as it really occurred, but misrepresented the effect of taking 
away the pre-emptive culling. This highlights a problem with models, and indeed any 
scientific hypotheses. Although a model, or hypothesis, may fit the real world as observed, if 
the internal mechanisms and relationships inherent in the model or hypothesis are incorrect, 
then the hypothesis may not hold true when conditions in the real world change. Scientific 
hypotheses are tested by carrying out experiments in which conditions are changed in a 
controlled way. Unfortunately, such experiments are rarely possible in the case of models of 
epidemic diseases. It is perhaps fortuitous that the epidemic of FMD in 2001 provided at least 
a range of different scenarios in different affected areas of the UK. The importance of 
studying carefully the field data from these different areas, in order to better understand the 
relationships between control policies and disease dynamics cannot be overstressed. Indeed, 
models can never be substitutes for careful analysis of field data – onerous though it might be. 
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Issue 3: Valid models should be fit for the use they are designed (and used) for; 

The Imperial model played a key role in the development of the 24/48 hour IP/CP culling 
policy (MAFF, April 4, 2001). The policy was justified on the basis of predictions of the 
model based on data available up to March 26. The model was therefore used as, and 
presumably designed to be, a predictive, or forecasting, model. A newspaper article from the 
time reproduces outputs from the model under the caption “scientific predictions” (Daily 
Telegraph, April 11, 2001), which show a large and long-lasting epidemic if IPs are 
slaughtered within 24 hours, but no pre-emptive slaughter is carried out. 

Although the FMD models developed in 2001 have been used in other ways, for example, to 
better understand the risk factors influencing spread of the disease retrospectively, it was this 
use of models to produce predictions given different control policy scenarios, and thence to 
support decisions about control policy, that was unprecedented and most contentious during 
2001. 

With respect to the ‘fitness for purpose’ issue, Dent and Blackie (1979) suggested two sets of 
judgements to be made: 

1. that the model is not different from the real system to a degree that will detract from the 
value of the model for the purposes for which it was designed; 

2. that the decisions made with the assistance of the model will not be measurably less 
correct than those made without the benefit of the model. 

Admittedly, with the benefit of hindsight, it seems that the predictions of the Imperial model, 
at the time it was used to support the development of the 24/48 hour culling policy, were 
pessimistic. This is apparent from the revised model outputs produced in the later work 
(Ferguson and others, 2001b). This means that the model did differ significantly from the real 
system, which must negate the value of its predictions. 

If rigorous analysis of the epidemiological field data eventually suggests that CP culling, a 
policy which was unpopular and costly in animal life and resources, was not in fact necessary 
to control the epidemic, then the decision to follow that policy would have to be judged, with 
the benefit of hindsight, as an incorrect one. The conclusion would therefore be that the model 
was not fit for the use made of it. This is a view that was also implied by other reviewers. Kao 
(2002) questioned the value of making detailed quantitative predictions for alternative 
policies, and Green and Medley (2002) suggested that the use of models to provide specific 
tactical advice early in the epidemic was not an ideal use of modelling. However, it is 
impossible to know how good the policy decisions may have been in the absence of the 
models. It will be important in the future to establish better bases for making tactical 
disease control decisions. 
This third issue with respect to model validity highlights the fact that it is not enough to 
consider whether models themselves are valid or invalid, more importantly it is the use of 
models which should be validated.  

The Edinburgh R model was designed simply to estimate the case reproduction ratio during 
the epidemic to date, and therefore to judge whether the epidemic was under control. As such, 
the approach, use and conclusion was valid (although the much simpler rolling-mean 
epidemic curve fulfils the same purpose). The latest value of R could be used to predict the 
future rise in case incidence (in the MAFF press release of March 23 an estimated doubling 
time of 8 days is reported as an outlook of the model). Using the model to make such 
predictions is only valid under the assumption that R will remain the same, an assumption 
which cannot easily be made (Ferguson and others, 2001b, concluded that R fell from the start 
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of the epidemic until April). Although estimating R may be a valid exercise, it provides little 
more information than the epidemic curve itself (the slope of the epidemic curve is a 
reflection of R) and the estimated dissemination rate (EDR), which can be calculated directly 
from case incidence data (Miller, 1976), is an alternative indicator of the level of control over 
an epidemic. 

The InterSpread model was used by DEFRA headquarters staff to monitor the epidemic. Its 
output featured less strongly in the justification for major innovations in control policy. In 
describing the use of InterSpread during 2001, Morris and others (2001) say, “computer 
modelling assists rapid and informed decision making on relative merits of different control 
strategies…”. They also comment that, “the best options suggested by InterSpread are well 
recognised from past decades of experience, but, the difficulty often lies in gaining approval 
for marshalling the required resources before the need for them is clearly demonstrable – 
despite the fact that this is when they will provide the largest payoff. InterSpread has a 
potential role in aiding early recognition of the warning signs…”. The implication is that 
models can be usefully used to support the requisition of resources needed by well-tried 
control measures by graphically demonstrating the possible development of an epidemic – 
perhaps in the relatively short term – but not to drive novel, untested policies that are 
unsupported by expert opinion, and which may have serious ethical issues, as well as personal 
consequences. Although the same reservations about using models to predict future events 
apply, if carried out with regard to epidemiological knowledge and expert interpretation, this 
use of models to secure resources may be valid in that it can lead to improvements in the 
quality of decisions made. 

The models of Keeling and others (2001 and 2003) and the second model of Ferguson and 
others (2001b) were designed and used as analytical tools for use in retrospective analysis of 
the epidemic – specifically to understand the factors influencing spread of the disease (risk 
factors). As such they are valid and useful tools – the R0 map and relative risk map they 
produced provide valid representations of the different risks of spread of FMD across the 
country during 2001, which would be a useful starting point when prioritising areas for 
surveillance and preventive measures. However, to use these models to predict how things 
may be in different circumstances (different control policies, different virus strain at some 
future time) is less valid, because in doing so it must be assumed that the models have 
accurately represented the internal workings of the system (e.g. farm infectivity) and that they 
have included all the risk factors which may be relevant in new circumstances. 

6.3.3 Problems within the FMD science group and the decision making process 
The ‘Lessons to be Learned’ inquiry (Anderson, 2002, page 91, box 10.2.2) highlights 
problems within the FMD science group. The group came together as a result of the Sir John 
Krebs, Chairman of the Food Standards Agency, consulting with a group of modellers - not as 
a result of the desire to bring together the necessary cadre of veterinary and associated 
expertise. Although experts from other scientific disciplines (including veterinarians) were 
brought in, the highly specialised nature of the modelling made it difficult for these other 
experts to engage with the detail of the models. The group was criticised as being a 
‘modelling sub-committee’, at times there were polarised views within the group but no 
mechanism for handling such conflict (Anderson, 2002). 

Regarding the key decision leading to the 24/48 hour policy, the ‘Lessons to be Learned’ 
inquiry admits (Anderson, 2002, page 92) to being “unable to find a clear account of decision 
making around that time.” (i.e. between March 21 and March 26). The government was under 
increasing pressure to be seen to be doing something new, which must have ruled out any idea 
of continuing solely to work on reducing slaughter delays on IPs. 



UseofModelsinDiseaseControlPolicy.doc 
 

 65

Those with the power in policy making had the impression that traditional methods were 
failing and were perhaps seduced by the illusion of truth provided by mathematics (Gupta, 
2001), for example the “scientific predictions” of the Imperial model reported in the Daily 
Telegraph of April 11, 2001. The point has been made that modelling and decision-making 
are two separate activities and remained separate during the 2001 epidemic. Models were 
used as part of the advice given to both the Chief Veterinary Officer and the Government’s 
Chief Scientific Adviser, who passed this advice on as they saw fit (Woolhouse, pers. comm. 
– see Appendix 3). Anderson and others (2001) also made the point to the Royal Society 
Inquiry that the scientists provided advice but did not determine policy. It is true that the FMD 
Science Group was not a ‘decision-making’ committee. However, the ‘Lessons to be Learned’ 
inquiry (Anderson, 2002, page 91, box 10.2.2) says that the “analytical evidence … was 
seized upon by decision makers in a situation where hard evidence was hard to come by”. The 
modellers were aware of the limitations of their models and indeed these are pointed out in 
the papers that were published later, if one takes the time to find them. Nevertheless, 
modellers were forthright in expressing the unreserved opinion that the conclusions of their 
models and the solutions suggested by them (i.e. CP culling) were correct. A report of the 
Select Committee on Environment, Food and Rural Affairs quotes evidence given on 
November 7, 2001, at the House of Commons as follows: “Those involved in the decision to 
adopt a policy of rapid contiguous culling were adamant that it had been the only way to 
bring the disease under control. … The Chief Scientific Adviser told us in November that 
‘there is a mountain of evidence to show that the cull policy we were following and pursuing 
… was the policy bringing it under control’. Professor Anderson said that ‘it is poorly 
understood that the contiguous cull saved animal lives’. Professor Woolhouse was insistent 
that ‘the contiguous cull was required to bring the epidemic under control, so to stop this 
exponential spread that could have taken in goodness knows how many more thousands of 
farms in the long run’.” (Select Committee on Environment, Food and Rural Affairs, 2002, 
para 26). 

This alienated other FMD and disease control experts from other backgrounds and must have 
stifled full scientific debate within the FMD science group. That there were dissenting views 
within the group is evident from interviews and articles published at the time. For example, 
Donaldson and others (2001) argued that, in the absence of significant risk of airborne spread 
of disease, which could be judged by veterinarians on the site of each IP, improved 
biosecurity could prevent much local spread of disease without the need to slaughter vast 
numbers of animals. Dr. Paul Kitching, then of the FMD World Reference Laboratory, 
Pirbright, UK, is reported by The Independent newspaper as saying that, at the end of March 
and in early April he had told Ministers and the Science Group that the models were wrong 
and that the contiguous cull was unnecessary on the scale at which it occurred (The 
Independent, 24 June, 2001). The contiguous cull, as enforced rigorously until April 27, was 
also seen as overzealous and unjustified on veterinary grounds by many among the field staff 
of the state veterinary service. Among those expressing dissent with the policy (particularly 
temporary veterinary inspectors) were many veterinarians who had wide experience of FMD 
internationally and those who had worked during the FMD epidemic in UK in 1967-68. The 
contiguous cull diverted limited resources and created a moral (and morale) problem among 
field staff, which was unhelpful in the fight against the epidemic (see Wardrope, 2002). 
Analyses of the epidemic in Cumbria, based on field data, provide evidence that the opinion 
of Dr. Kitching, that the contiguous cull as enforced was unjustified, was correct, and that the 
cull was not of major importance in controlling the epidemic in Cumbria at least (Honhold 
and others, 2003; Taylor and others, 2003). 
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From the above discussion, two main problems within the process of decision-making on 
FMD control during 2001 can be identified: 

3. The need to come up with novel control policies in the face of an apparently deteriorating 
situation is a symptom of the fact that the existing contingency plan for FMD control was 
overwhelmed and had no ‘ready made’ fall back position (e.g. see EU parliament, 2002). 

4. That decision makers had to “seize upon analytical evidence in a situation where hard 
evidence was hard to come by” (Anderson, 2002, quoted above) is a symptom of the fact 
that field data were not being adequately collected and analysed early in the epidemic – in 
other words there was a lack of ‘veterinary intelligence’. The best decisions are made on 
the basis of good information. Had more accurate and timely field data been available in 
2001, a better analysis of the developing situation may have led decisions in different 
directions. In 2001, the quality of information was compromised and model-based 
analysis was used as a substitute for poor information. What was perhaps not taken into 
account was that models themselves are equally dependent on good information for their 
validity. In truth, models were simply the tool used to analyse the data, but the novelty of 
this analytical tool to decision makers at the time and the nature of model outputs to 
appear more certain than perhaps they are, meant that the distinction between data and 
assumption was lost. 

6.4 Summary of opinion with respect to models and the contiguous cull 
If an epidemic is modelled with parameters which describe disease spread as being 
predominantly over very short distance then such models will demonstrate a beneficial effect 
of local culling. In addition, if the model has the majority of disease spread from IPs 
occurring before reporting of disease, then such models will inevitably conclude that pre-
emptive culling (culling premises before disease is reported) is essential to control the 
epidemic. To be effective, the pre-emptive culling would be targeted at the premises most 
likely to have been infected, i.e. local or neighbouring premises.  

The Imperial and Cambridge/Edinburgh models are parameterised in such a way that favours 
the use of contiguous pre-emptive culling. However, the field data on which these parameters 
are based was deficient. In order to estimate the timing of disease transmission events, and the 
distances separating farms between which these took place, it is necessary to know the dates 
on which farms were infected and the identity and location of the source farm for that 
infection. This information was missing for most IPs in 2001, and often the nearest previous 
IP was assumed to be the most likely source of infection. Using this biased data, and 
assumptions about the very early onset of infectivity, which were contrary to expert opinion, 
it is not surprising that these models find pre-emptive local culling to be an efficient method 
of controlling the epidemic. In contrast, the InterSpread model was set up with infectivity 
starting on or just before clinical signs appear and varying according to the stage of disease, 
and this model predicted that control of the epidemic was less dependent on high levels of 
local pre-emptive culling. 
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7. The future – recommendations for future work 

7.1 What needs are addressed by models and what does DEFRA need? 
DEFRA is faced with the task of making decisions about FMD control. Modelling can 
contribute to decision support. There are two distinct situations in which policy decisions are 
required: 

1. contingency (strategic) planning– ‘standing’ policy made in ‘peacetime’ which details the 
strategies to be followed in the event of future outbreaks; 

2. tactical decision making during an epidemic (‘wartime’) – reactive decisions to adjust 
control measures in response to unfolding events. 

One problem in 2001 was that the distinction between these two types of decision became 
blurred. The epidemic rapidly attained a scale unforeseen by the existing contingency plan so 
that new strategies had to be developed in response to the deteriorating situation. Furthermore, 
the lack of an adequate veterinary intelligence system meant that these new strategies were 
made and decided upon with the support of models based on incomplete data, using 
simplifying assumptions to fill in the gaps. In truth, models were simply the tool used to 
analyse the data, but the novelty of this analytical tool to decision makers at the time and the 
nature of model outputs to appear more certain than perhaps they are, meant that the boundary 
between data and assumption was overlooked. To avoid this in future there is a need to have 
more detailed contingency plans ahead of time; plans which cover several scenarios, 
including worst case scenarios, and anticipate the criteria on which decisions to adjust 
strategies and/or bring in different strategies will be made. In a discussion during the 
Royal Society Inquiry (Royal Society, 2002) the point was made that, “models must be 
developed in advance, and used as one of the tools to assist in designing contingency disease 
control plans. Those plans must be subject to proper scientific review, must be agreed with 
stakeholders in advance, and must emphasise the need for rapid action.” 

Contingency planning should be based on the wide range of available knowledge about 
disease epidemiology, disease control, the logistics of control and the economic consequences 
of disease and control. Modelling can play an important part in combining all this 
knowledge together to produce useful output for decision support.  
Tactical decision making should be based more on real veterinary intelligence than on 
predictive modelling. However, models can also play a role in interpretation of veterinary 
intelligence.  

However, it is stressed that modelling is only a part of the process, and is a possible tool 
among many that could be used to organise epidemiological knowledge. There have been 
suggestions that DEFRA should establish a dedicated modelling section at headquarters level. 
I would suggest that this is a bad idea. Modelling is a highly specialised area of work, in 
which techniques are various, constantly developing and becoming ever more sophisticated. 
Attempting to establish, within DEFRA, a group who’s modelling work might be considered 
‘definitive’, and given priority over the work of other groups outside DEFRA, is unrealistic  
and would also lead to an over-reliance on model-generated solutions. Rather, DEFRA should 
establish a core group with broad expertise in epidemiology, including quantitative 
epidemiology, which includes an understanding of statistical analysis and modelling. This 
group could consist of both headquarters and field based staff. The remit of this 
‘epidemiology group’ would be to collate, analyse, and interpret all information on animal 
health issues about which decisions are to be made. The group, would, of course, call on 
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outside specialist expertise, for example in modelling, where necessary. The group would also 
be responsible for evaluation of all research which may have implications for animal health 
policy. With particular reference to FMD, establishment of such a group would ensure that all 
possible lessons are learned from the 2001 epidemic. In any future epidemic, such a group 
would be responsible for the rapid provision of real veterinary intelligence, based on targeted 
monitoring of key parameters of the unfolding epidemic. 

The need for a structure to guide tactical decision making is being addressed. In a consultation 
document (DEFRA, 2003) a decision tree approach is described in which modelling and cost-
benefit analysis (CBA) will be used as part of the process to decide whether to use 
vaccination and/or pre-emptive culling during a future epidemic. With regard to this it 
important to consider what the modelling approach can be expected to do and what its 
limitations are. 

7.1.1 The scope of models in contingency planning and tactical decision support 
In decision support, economic CBA is a way of quantifying the economic criteria involved in 
a decision (and there are usually criteria other than purely economic ones). CBA requires the 
comparison of outcomes resulting from different courses of action. CBAs may compare a 
before and after scenario, or, real with and without scenarios, or, sometimes, a known current 
status quo is compared with a projected outcome following a change. Because FMD 
epidemics are rare events and never occur more than once in directly comparable situations it 
is not possible to attempt CBA of different FMD control policies based on comparisons of 
real events alone, i.e. a model is required to fill in at least one side of the CBA. At best, a real 
situation can be compared with a projected outcome following a different set of control 
options. This approach is exemplified in the retrospective analysis of FMD in the UK 
(Ferguson and others, 2001b) and the retrospective analysis of CSF in the Netherlands (Nielen 
and others, 1999). During 2001, the decision to adopt the contiguous cull policy was made 
using models made in the first month of the developing epidemic, in which projected 
outcomes following different control scenarios were compared. This approach relied on the 
models being able to accurately predict the course of the real epidemic, under the prevailing 
strategies and circumstances and in response to various control strategy alternatives. With 
hindsight, it was unrealistic to accept the predictions of the models as accurate and therefore 
the quality of the decision made with the support of the models is questionable. The 
conclusion of this report is that the use of predictive models to support tactical decisions 
is not to be recommended. 

The reliability of models as predictive tools in FMD epidemic is limited, especially when 
trying to make long term predictions from the early days of an epidemic. The modellers 
themselves say that two or three weeks’ data are needed to begin to model a specific 
epidemic. Even given good ‘start up’ data, there are inherent difficulties in predicting the 
future course of an FMD epidemic. Important factors can change during the course of an 
epidemic, which alter the tendency of disease to spread, such as farmers’ varying attention to 
biosecurity measures, which essentially cause the R0 to change during the epidemic in an 
unpredictable way. Such variability could be included in stochastic models, but these then 
have the problem that each scenario may produce vastly different outcomes, any of which are 
possible, therefore presenting decision makers with information of limited predictive value. 

The final phases of epidemics are particularly difficult to predict. Ferguson and others 
(2001b) point out that the duration of an epidemic tail depends largely on stochastic, low-
probability, long-range transmission events causing significant outbreaks in new areas and 
that the unpredictability of these factors precludes making predictions of the extinction date of 
epidemics. 
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Measures like vaccination or pre-emptive culling are most efficient when implemented early 
in an epidemic, so decision support would be most needed at this time. Leforban (2002) 
suggests that the time taken to detect the primary outbreak should be the deciding element in 
the choice of control method. With particular reference to making a decision in the use of ring 
vaccination, James and Rushton (2002) say; “The progress of an outbreak of FMD is 
extremely difficult to predict in the early stages of the disease. The course of an outbreak can 
be critically affected by minor and inherently unpredictable events, such as a single livestock 
movement. For this reason, predictive disease models, which depend on statistical 
probabilities of transmission, have not met with much success in predicting the spread of 
FMD from herd to herd, and still less the impact of control measures. Given these constraints 
on predicting the impact of ring vaccination on the progress and extent of an outbreak, it is 
difficult to envisage an economic analysis that would guide decisions on the possible use of 
ring vaccination. This leads to the rather unsatisfactory conclusion that, in most cases, the 
impact of using or not using ring vaccination is essentially unpredictable. By the time that it 
becomes apparent that ring vaccination would have been justified, it is likely to be too late to 
use this method of control.” (James and Rushton, 2002). 

The most appropriate use of models is as tools in ‘peacetime’ to aid retrospective analysis of 
real epidemics to gain insights into behaviour of epidemics. Hypothetical scenarios can then 
be modelled to develop insights into the relative merits of different strategies in different 
situations. In this way decision makers can be provided with a priori supporting guidelines. 
As an example, modelling was used by Mourits and others (2002) to show that different 
control measures would be justified in different density livestock areas and this idea has been 
adopted within the Dutch contingency plans for CSF and FMD (Mirjam Nielen, pers. comm.). 
In a similar way, models may be used to suggest areas of the UK where vaccination would be 
a more or less appropriate strategy in case of FMD incursion. 

The use of models during ‘wartime’ should then be restricted to monitoring the epidemic and 
aiding short term fine adjustments to strategies. ‘Wartime’ models should be one of several 
tools available to the epidemiologists to aid them in analysing and understanding the 
behaviour of the epidemic. Comparing real behaviour to ‘expected’ (model-generated) 
behaviour could alert epidemiologists to unexpected circumstances in the field which could 
then be targeted for action. ‘Wartime’ models could also be used to carry out limited ‘what-if’ 
simulations, to assess risks associated with various developments of the epidemic, so that 
appropriate contingencies could be made in resource planning. 

The rest of this chapter provides more detailed suggestions of the research required to inform 
FMD contingency planning and the types of decision support tools that could usefully be 
developed in the coming years. It should be understood that modelling is not the only method 
relevant to this research. Modelling is but one method within the wide range of quantitative 
epidemiological tools. When commissioning research therefore, the desired output is 
what should be specified, with the methodology left open to the researchers, unless of 
course, a working model forms part of the desired output. 

7.2 Contingency planning (‘peacetime’) 

7.2.1 The key questions 
Questions for research to address include the following: 

1. What are the relative merits of different control strategies? 

i) Vaccination (various strategies) and culling (various strategies) are the obvious 
strategies requiring attention. However, other control measures such as improving 
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biosecurity and controls on different kinds of agricultural and livestock movements 
should be looked at – the fact that these measures are more difficult to model makes 
it more important that they are not overlooked. Perhaps novel approaches will be 
needed to evaluate the potential effects of biosecurity measures. 

ii) There are several criteria for ‘merit’. Analyses should look at the resource, 
logistic and economic consequences of different strategies. It is interesting to note 
that the InterCSF model used by the Dutch to analyse control measures used in the 
1997-98 CSF epidemic included limits on pig rendering capacity, so that 
slaughtering delays would be modelled if too many farms were to be culled and 
slaughter capacity would run out. This was not a feature of models used during the 
UK FMD epidemic in 2001, but is very important in contingency planning, which 
should prepare the authorities not only for what will need to be done, but how to do 
it. 

2. What factors influence the appropriateness of different strategies? 

i) What is the relationship between the characteristics of disease spread, as 
indicated for example by such things as the spatial transmission kernel (or, plainly, 
the relative importance of spread over different distances) and other factors such as 
livestock density and type, and the effectiveness or otherwise of local vaccination or 
culling? General models could be used to answer this question, as opposed to models 
specifically reproducing the 2001 epidemic. In a discussion at the Royal Society 
Inquiry (Royal Society, 2002) the suggestion was made that a ‘general theory for 
neighbourhood control’ could be developed. Woolhouse (2002b) similarly suggests, 
“Development of a formal quantitative understanding of the impact of 
neighbourhood disease control policies, e.g. ring culling or ring vaccination, on 
disease spread.” As an example of modelling addressing this issue see Matthews and 
others (2002). This is an interesting idea but care would be needed when transferring 
‘generalised’ ideas to specific situations. 

ii) Can ‘triggers’ be identified which would lead to the choice of one strategy over 
another? Triggers should be parameters easily measurable in real epidemics. For 
example, are different measures appropriate to fight disease in different areas, or at 
different times in an epidemic. When is pre-emptive culling appropriate or not? 

3. Can measures be effectively targeted? For example see the current work of Keeling and 
others (2003) on targeting vaccination. 

Note that on the question of vaccination or extended pre-emptive culling the decision of 
whether to apply a measure or not can not really be left to a ‘wartime’ model. The 
contingency planning should therefore have developed a priori decision rules (or triggers) 
leading to application of the measures. If the decision depends partly on economic or logistic 
factors then a model or spreadsheet framework should be set up in advance so that these 
factors can be rapidly evaluated. Such a framework would include the potential economic 
effects of changes in trading arrangements, resource and economic costs of switching 
resources to vaccination duties, costs of ‘knock on’ consequences such as changing 
requirements for serological monitoring etc.. Once the decision to apply measures is made, 
‘wartime’ models may assist in deciding where and what to vaccinate or cull. 

An important consideration on the vaccination modelling issue is that there is also a need for 
more detailed data on the responses of animals to vaccination. This points to a need for further 
research on vaccines and vaccination, for example, the development of protection after 
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vaccination and the possible levels of infectivity of animals themselves exposed to infection 
shortly after vaccination etc.. 

7.2.2 Use of models in training 
Realistic stochastic spatial simulation models may be useful as a means of carrying out 
‘virtual reality training’. This would allow people to build up ‘virtual experience’ to draw on 
in case of real disease. Also the results of many virtual exercises can be analysed and 
documented to provide ‘collective experience’ which may be used in refining contingency 
plans, which should be built up to prescribe courses of action to take in case epidemics 
develop in certain ways. Data from virtual epidemic runs can thus be used, in the absence of 
real epidemic data, to look for key epidemiological indicators with some predictive value, or 
particular value in decision support (as decision triggers). 

7.3 ‘Wartime’ – Veterinary intelligence – Development of an ‘epidemic management 
system’  
Tactical decisions, which would direct courses of action within various options already set up 
by contingency planning, should be based as far as possible on real information about the 
progress of the epidemic, i.e. veterinary intelligence. Wartime modelling could be one of 
several tools used to analyse this veterinary intelligence. 

The objectives of ‘wartime’ modelling should be to provide short and medium term 
projections, specifically to allow resources to be efficiently targeted. These projections would 
also be used to alert authorities to potential risky situations, so that adjustments aimed at risk 
reduction can be made. It is particularly important that such models are used in parallel 
with routine and ‘real time’ analysis of field data to monitor the progress of the 
epidemic. Divergence of the ‘expected’ course, as predicted by the model, and the actual 
course as revealed by analysis of real data would highlight where tactical adjustments to 
control measures may be needed. 

Once an epidemic has generated sufficient data to allow longer term predictions to be made 
from models, these alone should not be relied on to support dramatic changes in policy 
that are not foreseen in contingency planning, but regularly updated predictions would be 
useful in forward planning of resource requirements. 

Of particular value during epidemics would be individual farm level ‘models’ which would 
provide a framework within which to combine field data with knowledge of epidemiological 
risk factors to derive an assessment of risk of onward transmission from IPs. The airborne 
spread models are a special case of this kind of model, and the EpiMAN system also includes 
this feature (Sanson, 1993). Hutber (2001) is also working on models with this objective. 

7.3.1 InterSpread / EpiMAN? 
The use of the simulation model, InterSpread, as an epidemiologists’ tool during 2001 has 
been discussed. This type of model clearly has potential value as part of an overall epidemic 
management system. With reference to further development for UK, Morris (2002) suggested 
that a demographic farms database including farm polygons would be better than point 
references and strongly encourages the development of a national spatial farms database for 
the UK similar to the New Zealand Agribase. Morris also points out that, “In order to produce 
useful conclusions, modellers must work closely with epidemiologists who are analysing the 
epidemic, and the modelling and analysis must go hand in hand, or else the modelling results 
may produce quite misleading predictions on the scale and pattern of the epidemic, and the 
impact of control measures.” Morris (2002). This means that any model which is to be used as 
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a ‘wartime’ tool needs to be transparent so that interaction with epidemiologists is easy and 
such a model should have an interface making it amenable to ‘tinkering’. Such tinkering is the 
means by which the people involved on the ground can use the computer model as an aid to 
understanding the interacting processes of the epidemic and the effects of control measures on 
it. 

7.3.2 Logistics/resource models 
Linking short term predictions made by ‘wartime’ models to simple models which estimate 
future resource requirements would be an invaluable asset in disease management. Such 
models should be developed to work as integrated parts of the epidemic database (e.g. the 
DEFRA disease control system (DCS)). 

7.3.3 Databases, simple analyses, key predictive parameters 
In both the Dutch CSF epidemic of 1997-98 and the UK FMD epidemic of 2001, problems 
were encountered because databases were not linked up where necessary. Policy-makers 
complained about the adequacy of the information provided to base policy decisions on. This 
highlights the need for real time data collection and analysis during an epidemic. This need is 
addressed by systems like EpiMAN, though custom built data management systems could 
also be developed to address this need (such as DCS). 

There are gaps in the currently available data that have been identified as important to 
modelling and management of FMD epidemics. In addition to deficiencies in the geospatial 
aspect of the farm database referred to above (i.e. point data to be replaced by polygon data) 
the fact that small farm units are missing has also been pointed out. The current census data 
excludes farms employing less than a certain number of labour units, but small ‘hobby’ farms 
could be particularly important in FMD epidemiology. Another area where data are currently 
lacking is that of livestock movement. In 2001, the lack of a comprehensive animal 
movements database made tracing of dangerous contact stock that had passed through various 
markets extremely difficult. 

The potential economic benefit of more rapid tracing of animal movements, resulting in more 
rapid control of an epidemic, could be demonstrated using a model. The purpose of this would 
be to compare the cost of introducing a comprehensive animal movements database with the 
potential benefits, therefore providing economic justification for such a system. 

The key role of simple analysis of data, perhaps carried out at local disease emergency control 
centres (LDECC) would be to produce veterinary intelligence, and in particular, key 
epidemiological parameters which have been identified during contingency planning as 
having particular relevance to decisions taken in epidemic management. For example, a 
particularly important indicator would be the delay between report of disease and slaughter of 
livestock. This parameter has been shown to have value as a short term predictor of case 
incidence (Honhold and others, 2003). If the idea of local analysis of data is accepted then 
there is clearly a staff/skill resource and training implication.  

Another important epidemiological activity is the tracing of sources of infection. Back tracing 
was not prioritised in 2001 but the information on sources of infection was required by all the 
models and would also have provided much needed veterinary intelligence on the 
mechanisms by which disease was spreading, allowing appropriate control measures to be 
used. 

Much was made of estimating the R value through the 2001 epidemic as an indicator of the 
level of control being achieved. However, parameters which can be simply calculated from 
the raw epidemic data, such as the EDR (basically a rolling ratio of cases occurring in 
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consecutive periods of time, e.g. 4 days, 7 days), are just as useful as monitors of the progress 
of epidemics (Morris and others, 2002). When epidemics are widespread in different locations 
it is important that the key epidemiological parameters are monitored locally, as aggregating 
data for the whole country would be misleading if sub-epidemics are progressing at different 
rates and ‘out of synchrony’ in the different areas. 

There is much to be gained from retrospective study of FMD epidemics worldwide, wherever 
good quality data are available, with the objective of identifying simple, readily measurable 
parameters, such as early disease incidence, which may have value as indicators of the risk of 
local spread of disease (Hutber and others, 1999). Such indicators could be useful in local 
veterinary decision making and local tuning and targeting of control measures. 

7.3.4 Airborne spread 
Of particular interest with regard to local tuning and targeting of control measures is 
assessment of the potential for direction and magnitude of airborne spread of FMD. DEFRA 
should work closely with developers of airborne spread models (UK Met Office) to ensure 
that appropriate output is produced in a form that is needed for tactical decision making at 
times of outbreak. When formulating contingency planning it must be remembered that the 
outputs of meteorological models will always require expert interpretation. Inclusion of 
meteorologists and epidemiologists in the evaluation of model output and its impact on 
decision making should be built in to contingency plans. 

Although airborne spread models are well developed, particularly the meteorological 
atmospheric dispersion components, there are still areas where they can be improved. 
Donaldson and Alexanderson (2002) state that further research is needed to refine the input 
data and improve the accuracy of these models. These are mainly the areas concerning virus 
emission to the air and infection of animals by airborne virus, but there is also potential to 
improve understanding and prediction of localised variations in dispersion of virus. John 
Gloster (UK Met Office) provided the following summary of potential research areas: 

Virus emission 
Although emission of virus in the breath of animals is being well researched are there other 
important ways in which virus gets into the atmosphere (e.g. splashing, evaporation from 
contaminated surfaces)? 

Animal experiments are conducted to quantify virus excretion (animal species, virus strain, 
stage of disease), but other factors could also be important (e.g. time of day, stress, size of 
animal). 

At the moment the models deal with the excreted virus as if it were ‘dissolved’ in the 
atmosphere, therefore as an air plume widens the virus is ‘diluted’. However, virus may be 
excreted associated with particles of epithelium etc., each containing large amounts. These 
particles could be carried long distances unchanged, therefore allowing infection to take place 
further away than a model based on dilution of virus along a plume would predict. Research 
should be carried out on this. 

Airborne transport 
Possible effects of local topography and day/night effects at the moment are assessed by 
experts on a case by case basis when interpreting output of meteorological models. 

Ongoing research will improve interpretation of these models. 

A significant limitation of the dispersion models at present is that they produce output in 
terms of average concentrations in a plume over a 24 hour period. This misses potential short 
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term peaks (which could lead to transmission of infection). Therefore it would be useful to 
develop models with more detailed output. 

Infection 
Doses of virus required to infect animals has been researched In general. However, variations 
associated with different factors such as stress, local conditions (in fields or buildings), the 
period of challenge (short high dose or long low dose) are not fully understood. 

Short range airborne spread and ‘local spread’ - the need for more detailed 
understanding: 
During the epidemic of 2001 it was concluded that airborne spread of the PanAsia type of the 
FMD virus was unlikely to occur over a few hundred metres unless large numbers of animals 
were emitting virus at the same time. However, much of the transmission of disease in 2001 
was recorded as ‘local spread’, which was assumed to be effected by virus carriage by moving 
fomites. In many cases the fomites responsible and the linking movement could not be 
identified, which left the actual source and route of infection of many IPs inadequately 
explained. It is suggested that if virus were carried in the air associated with particles each 
harbouring large amounts of virus, and if other localised effects were important, such as 
topographical features, animal stress etc., then more of the ‘local spread’ could be attributed 
to airborne than first thought. In order to assess this possibility research addressing the details 
indicated above would be necessary. 

7.4 Risk modelling 
The risk assessments carried out during 2001 were undoubtedly useful but having to carry 
them out in the heat of the epidemic was not ideal. As contingency plans are now developed 
in ‘peacetime’ it would be beneficial to revisit many of these risk assessments as they could 
well assist in formulating criteria for different courses of action that could be built into the 
contingency plans. The precise risk assessments to be carried out would depend on the 
particular critical issues identified in contingency planning, for example, how to deal with 
public access to the countryside. If quantitative data unavailable during the 2001 epidemic 
becomes available (see below) some of the previously qualitative assessments could be 
quantified, providing planners with more information on the relative importance of different 
risks.  

The regular assessment of risk of disease incursion from different regions of the world can 
help to focus surveillance and protection activities and alert the authorities to emerging 
potential risks so that contingency plans can be updated accordingly. A project of this type is 
already set up by the VLA risk research department (see section 6.2.5). It should be 
understood, however, that although risk assessment exercises of this type may produce 
quantified estimates of the average annual risk of disease, they should not be used as 
forecasting tools. There are always uncertainties in these assessments and, in addition, the fact 
that an assessment may suggest that an outbreak may occur, on average, every 5 years would 
be no basis to expect an outbreak if 5 disease-free years have passed. As with models in 
general, the rule should be to use the quantitative output of such models to gain qualitative 
insights into the situations studied. 

7.5 Experimental epidemiology 
The very precise data needs of disease spread modelling and risk modelling, highlight the 
gaps remaining in knowledge about FMD epidemiology. Kitching (2002) comments that 
“much still remains unknown about the natural history of FMD virus”. For example, Bartley 
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and others (2002) describe the shortcomings of currently available data on virus amounts and 
survival in excretions and on fomites. Such data are crucial to risk assessments and disease 
modelling. Much of the spread of disease in 2001 was attributed to ‘local’ spread mediated by 
fomites, and yet the precise mechanisms of spread are poorly understood.  

Ferguson and others (2001a) point out the need for research to quantify how farm 
infectiousness depends on time from initial FMD infection. More specifically, Woolhouse 
(2002b) suggests that further studies are needed “with particular attention to variability in the 
time course of viraemia, seroconversion and clinical signs, effects of different doses and 
routes of transmission, the time course of the response to vaccination and result of exposure 
to virus at different times post-vaccination. These experiments need to be carried out in 
different livestock species (including deer) and with different strains of virus. The emphasis 
throughout should be on quantifying rates of onward transmission of infection.” 

Work is being carried on at the Institute for Animal Health, Pirbright laboratory which 
focuses on the development of infectivity in the individual animal, and this work could 
contribute to answering the question about farm infectivity. In addition to this, there is a need 
for more experimental work aimed at providing quantitative data on viral excretion and 
transfer by various fomites. 

The FMD models developed during 2001 are specific to the strain of virus causing that 
epidemic. It will be important to carry out comparative research on other strains of FMD virus 
so that the implications of strain variations (e.g. in tendency for airborne spread, species 
differences in susceptibility and infectivity etc.) for choice of control strategies can be 
explored in models. 

The development of immunity after vaccination is another area where detailed quantitative 
data are needed for inclusion in models addressing the issue of vaccination. 

Molecular epidemiology is an ongoing activity at the Institute for Animal Health Pirbright 
laboratory. This activity maintains a watch on the strains of virus circulating and will identify 
the emergence of new strains. Unfortunately genotype is no predictor of phenotype, so the 
characteristics of new strains, for example the tendency for airborne spread, cannot be 
predicted from the molecular work. 

7.6 Quantitative epidemiology – analysis of real epidemics 
Much can be learned from experience and the UK FMD epidemic of 2001 could prove to be a 
valuable experience. As much as possible should be learned from the 2001 data. The epidemic 
needs to be studied particularly in order to learn about the factors which determined the 
behaviour of the epidemic in the different affected areas. Quantitative epidemiological 
analysis can be used to identify risk factors for the spread of FMD between farms and develop 
hypotheses about disease spread which will be useful in future decision making. Not least, 
better understanding of risk factors would allow local control measures such as pre-emptive 
culling or local vaccination to be targeted and carried out in a prioritised way, resulting in the 
most efficient use of resources. 

Of particular relevance to FMD contingency planning, it may be possible to identify key 
epidemiological parameters that are available in real-time and early in an epidemic, and have 
some value as predictors of the likely size of regional foci or whole epidemics. These 
parameters would be the triggers which could determine which of several predetermined 
choices of action might be taken, e.g. the choice of vaccination over culling only policies. 
Obvious examples might be the time taken to identify the primary case (as suggested by 
Leforban, 2002) or the number of regional foci at the beginning of the epidemic. 
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Modelling is only one tool in the range available to quantitative epidemiology, so many 
analytical approaches should be encouraged. 

Further analysis of field data and individual case reports of the 2001 epidemic (final reports 
database) may provide improved assessments of the infection sources, links and routes of 
infection for IPs. This analysis should preferably be carried out by those with first hand 
experience of the epidemic, and would be a logical task for a DEFRA epidemiology 
group. Analysis should be aimed at allowing better quantification of mechanisms of spread 
between farms. This would allow more accurate ‘epidemic trees’ to be constructed for the 
epidemic. Such epidemic trees have the potential to provide great insights into the dynamics 
of the epidemic, see for example Haydon and others (2003). 

7.7 Summary of requirements for specific DEFRA research 

7.7.1 The policy making process and the integration of modelling within the process 
Several of those consulted during the preparation of this report pointed out a lack of dialogue 
among scientific advisers, policy advisers and field staff within DEFRA and scientists from 
different disciplines outside DEFRA. Possible results of this might be that the wrong policies 
are evaluated, inappropriate questions are asked of models, data limitations and analytical 
constraints are misunderstood and conclusions are wrongly interpreted. Current moves to 
make the contingency planning process more open and consultative are to be 
encouraged. 

Specifically on the use of modelling, the Royal Society Inquiry (Follet, 2002) has the 
following on page 70: “If models are to be used to support decisions on control policies, 
DEFRA needs to develop a process that highlights their strengths and weaknesses for use in 
disease control.” An ideal way of developing an understanding of the strengths and 
weaknesses of models is to be involved in the model’s development. In this way modelling 
becomes an integral part of decision making process – model development and use of the 
model should be an interactive process involving close collaboration between the model 
builders, subject matter experts, data managers, policy makers and their advisers. DEFRA 
needs to make sure that it has staff with adequate skills, in particular quantitative 
epidemiology, of which modelling is just a part, so that they can better integrate 
scientific advice with policy making. The establishment of an epidemiology group has 
already been suggested as a means to address this need. 
The interaction can begin with the framing of the specific questions to be answered by the 
research. Both risk assessment models and disease models are constructed to answer specific 
questions and may not easily be able to be adapted to answer different questions. Model 
builders will have the best idea of how questions need to be framed in order to be answered 
by their models. So it would be useful to build into any research project an initial phase when 
the exact questions to be addressed by models are decided upon in a consultative process 
involving the modellers and the policy makers.  

One of the difficulties encountered during 2001 was the lack of constructive dialogue between 
field veterinarians, FMD experts and modellers. Modelling groups should be multidisciplinary 
and where possible seek the input of different groups with knowledge of the particular 
problem. 

While disease spread models, economic models and risk models provide useful information 
which contributes to the decision making process, there are frequently other factors pertinent 
to a decision which are not accounted for in models, e.g. social factors, political 
considerations etc.. Models will therefore never provide complete and unequivocal 
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answers to a decision making problem. Models should therefore be seen as tools for 
exploring some of the issues involved, but the criteria on which the decision will be based 
should include other issues not addressed by the model. 

7.7.2 The main areas for epidemiological (including modelling) research 
The following are suggested as specific issues for DEFRA to address:  

∗  quantitative analyses of real FMD epidemics; 

∗  ‘basic’ epidemiology of FMD – experimental studies. 

∗  commissioning of work to address specific policy questions as an ongoing, reviewing and 
updating, contingency planning process, this to include economic and practical logistic 
considerations; 

∗  development of an ‘in-house’ simulation model for use as part of an epidemic 
management system and for training exercises; 

∗  development of other tools for ‘wartime’ epidemic management – e.g. logistics models, 
risk assessments, airborne spread models; 

Finally, DEFRA should maintain an informed watching brief on ‘outside’ research. All 
research, but particular that based on modelling, requires careful assessment. The models 
developed during 2001 are still being used to explore aspects of FMD epidemiology and 
control (e.g. Keeling and others, 2003). Modelling methodology is also being developed and 
opportunities to use novel approaches to explore old issues may arise. Researchers whose 
work may be relevant to DEFRA policy should be invited to discuss their work in a forum 
including DEFRA and independent scientists. One suggestion would be to maintain a 
standing committee to regularly review FMD epidemiological research, including modelling, 
being carried out in the wider scientific community, so that, where possible the results of good 
research may be incorporated into policy. The suggested DEFRA epidemiology group could 
play a key role in coordinating and contributing to this activity. 
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8. A guide to ‘good practice’ when using models in decision making 

8.1 Quality assurance of models: 
If models are to be used in decision making with confidence, then verification and validation 
are key issues. Decision makers must be assured of the quality of models. Unfortunately there 
are no hard and fast rules regarding quality assurance of models. Guidelines have been 
broadly discussed in sections 3.6.4, 3.6.5 and 3.6.6. The important issues will be summarised 
here. 

8.1.1 Verification 
Verification of a model refers to internal checks to ensure that the ‘mechanism’ of the model 
(i.e. the mathematics and programming) are correct. This means that the mathematics and 
programming should correctly reproduce the mechanisms of the model, as conceived by the 
model’s creators, in computerised form. 

Such verification requires intimate knowledge of the model’s processes and can only really be 
carried out by those with mathematical and programming expertise. It is often the case that 
the verification of a model has to be taken on trust, assuming that the model’s creator has 
carefully checked things as the model was constructed. An independent review of the model’s 
mechanisms might be carried out by another modeller, but under time constraints it is not easy 
to check every single process within a complex model. 

8.1.2 Validation 
Validation of a model refers to checking that a model is ‘realistic’. An analogy may be helpful 
here. Think of viewing a film on a television set. The film is supposed to be a representation 
of a real situation. Validation would involve assessing how realistic the film is. To make this 
assessment does not require any knowledge of the electronics inside the television. Checking 
the wiring and electronics of the television is analogous to model verification, and requires an 
electrician (modeller). But anyone who has knowledge of the film’s subject matter can 
validate the film. Problems with film validity may stem from internal verification problems 
(the television may be incorrectly wired such that colours are incorrectly rendered), or wrong 
assumptions may have been made by the film makers about the film’s subject. Realism may 
be compromised if the film uses cartoon animation rather than live action, and part of the 
validation process would involve an assessment of whether the cartoon representation is 
adequate for the purposes of the film. 

So, model validation should involve subject matter experts and decision makers who do not 
necessarily need to have modelling expertise. The discussion in section 3.6.5 highlighted three 
issues to be addressed: 

1. Models should make biological sense:  

i) Subject matter experts should be happy that the conceptual framework of the model 
is biologically correct. In particular, all the assumptions and simplifications should 
be checked and agreed upon. For example, in a disease epidemic model, all of the 
known methods of disease transmission should be adequately accounted for in the 
model and the epidemiological processes of infection, incubation, and recovery 
should be adequately realised. 

ii) Subject matter experts should be happy that the model output can be explained in 
terms of current epidemiological knowledge. This is not to say that unexpected 
results automatically invalidate a model. It may be possible to interpret current 
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epidemiological knowledge in different ways and an unexpected model result may 
lead to novel interpretations of current knowledge. 

2. Models should mimic real life: 

i) It seems an obvious statement that a valid model should be able to reproduce 
recorded reality. However, the fact that a disease model reproduces a recorded 
epidemic reliably does not necessarily prove validity. A model may contain internal 
errors within the conceptual framework which compensate, cancelling out the errors 
in a particular situation. This makes the checking of the conceptual framework of the 
model mentioned at 1.i) above essential. 

3. Models should be fit for the use required of them: 

i) This is perhaps the most important issue of the three. There are no hard and fast rules 
about model validity. This discussion has used phrases such as, “disease transmission 
should be adequately accounted for”. The word, “adequately” reflects the fact that 
simplification in models is inevitable. The final criterion of adequacy concerns utility 
of the model. This point is also made in the report of the Royal Society Inquiry, 
which says on page 70, “the quality of a model can be judged only in the context of 
the question that it sets out to address” (Follet, 2002). Provided the simplifications in 
the model do not compromise the value of the model outputs to the decision making 
process then the model can be judged as valid. 

ii) Decision makers and subject matter experts should jointly assess what information is 
critical in the decision to be taken. The utility of the model then depends on how well 
it can provide that information. The information provided should be judged for 
accuracy and precision. Accuracy depends on the validity issues already covered in 
points 1. and 2. above. The precision will depend on the inherent variability of the 
system it represents and also on the availability of precise data with which to 
quantify parameters in the model. The situation has already been described where 
stochastic models based on imprecise data may produce such a wide range of 
possible outcomes as to be useless in decision making. 

iii) Components within a model may be questionable from a scientific point of view, 
either because they are simplifications of reality or because the quantification of 
parameters has to be based in imperfect knowledge. If these components have little 
influence on the outputs of the model which are critical to the decision then the 
model is still useful and therefore ‘valid’. Sensitivity analysis is the process by 
which the influence of model components on the final outcomes (in terms of 
information provided for decision making) should be judged. 

It is important to realise that model validation depends on a weight of evidence, rather than a 
single proof. It is easier to invalidate a model than to validate it. That model output matches 
life and can be explained biologically does not prove that a model is valid, but if model output 
cannot be explained and does not match real life experience then it is likely to be invalid. 

8.2 Checklist of issues to address and questions to ask when using models in decision 
making 
1) The problem to be solved, or the decision to be supported by the model, must be clearly 

defined and the detail of information required from the model must be specified in 
advance. For example, if economic information is needed the model must be able to 
provide it or contribute to its provision. Models are constructed to serve a particular 
purpose and simplifications are made on the basis of the degree of complexity required to 
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fulfil the final goal. This means that ‘general models’ may be of limited use for particular 
decisions, hence the need to discuss particular decisions with modellers at the 
commissioning stage. 

Discussions at this stage should cover both the requirements of the decision and the 
potential and limitations of a model to meet those requirements. It may even be concluded 
at this stage that alternative approaches to decision support, not involving modelling, are 
more appropriate. 

Close collaboration between the decision makers, subject matter experts and model 
builders is important here. 

2) As mentioned above, validation of models is difficult. Dent and Blackie (1979) point out 
that “the process of gaining confidence in the model is a slowly emerging one over the 
period of model construction, through formal validation, to application of the model.” 
This implies that for the decision makers to have maximum confidence in the model they, 
and their close advisers, should be involved in all of these steps. 

Close collaboration between the decision makers, subject matter experts and model 
builders is also important here. 
While the modellers may be experts in the field of mathematics and computing they 
should maintain a dialogue with subject matter experts throughout the process of model 
building so that the biological validity of the model becomes ‘built-in’. Dialogue should 
also be maintained with those providing data for the model, so that the modellers and 
subject matter experts understand any limitations of the data. 

Maintaining such dialogue during model building should ensure model transparency, such 
that the simplifications, assumptions and limitations of the model do not become hidden to 
be overlooked during final validation and are fully appreciated by all involved in the 
decision. 

Since the process of model building can itself be a learning process there is much to be 
said for the idea that the decision makers and their advisers themselves should be involved 
with or interact with the process. 

3) When the model is finally to be used in decision making a formal verification and 
validation process should be followed – see the discussion at 8.1 above. 

Verification requires the services of an expert in mathematical or computer simulation 
modelling. 

Validation can be carried out by subject matter experts in collaboration with the decision 
makers. 

Important in validation would be a full examination of all assumptions and simplifications 
made in the model. Where the values of parameters have been assumed or approximated 
sensitivity analysis must be carried out to assess the influence of assumptions and 
simplifications on the final model outcome. 

Prediction models have to either assume that model input parameters remain unchanged 
into the future, or change in an assumed way. The validity of such assumptions must be 
checked. 

Models require that input parameters be quantified. Very often the quantification of 
parameters has to be based on assumption or expert opinion. The validity of parameter 
quantification must be checked. Sometimes, parameters are ‘fitted’. This means that the 
model outcome is assumed, or fixed according to some recorded reality, and parameters 
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are given values to ‘fit’ this outcome. A potential problem with this method is that several 
combinations of ‘fitted’ values may all produce the same desired outcome and there is no 
way of knowing which combination is biologically correct. Finding out how parameters 
are quantified is therefore an important part of the validation process. 

4) It is extremely important that any interpretation of model output is made with reference to 
the assumptions and simplifications inherent in the model – sensitivity analysis should 
be carried out to assess the potential influence of assumptions and simplifications on 
critical decision support information. 

5) When dealing with stochastic models the range of outcomes for each scenario should be 
considered, not simply an average or median outcome. This is best done using frequency 
distribution charts. 

It is important to appreciate that there are three distinct sources of variability of outcomes 
from stochastic models. Natural variability of biological parameters, the effect of chance 
and data uncertainty. If huge variability of outcome results from known natural variability 
and chance alone (i.e. data are as certain as reasonably possible) then the conclusion 
should be that the system is essentially unpredictable (chaotic) and therefore modelling 
may be of little help to decision making. However, modelling chaotic systems, such as the 
risk of FMD introduction to UK, for example, can be useful for certain decisions or policy 
development. Even though a meaningfully precise assessment of the expected frequency 
of introductions may be impossible, modelling can serve to highlight the factors which are 
most influential in the final outcome (through sensitivity analysis). this might lead to 
better targeting of protection and surveillance programmes. 

A model with a large amount of variability in the outcome due to data uncertainty is also 
of limited use in decision making but could become useful if more precise data could be 
obtained. A judgement would have to be made as to the relative benefit of obtaining that 
data, compared to supporting a decision in a different way (without modelling). 

The fact that a stochastic model predicts a range of possible ‘futures’, reflecting the 
unpredictability of real life, means that it must be used with care as a decision support 
tool. Decision makers must not rely on the model to make a decision for them but be 
prepared to use it as part of a process in which other factors, such as the ‘riskiness’ of a 
policy, are weighed. 

It is especially important that decision makers understand that the range of outcomes 
predicted by a stochastic model may also be, at least in part, a reflection of data 
uncertainty. This again means that models cannot always be expected to provide definitive 
guidance in decision making. In the past decisions have often been made in the face of 
imperfect data, and the skills involved in this process must not be forgotten – models must 
not be seen as a tool to produce knowledge without data. 

6) Bearing in mind issues raised above, decision makers need to be prepared in advance for 
the probability that models will come up with imprecise results which are also conditional 
on assumptions about uncertain input data items. Sensitivity analysis may suggest that the 
model result is sensitive to one or more uncertain assumption. Results may therefore be 
presented for a range of scenarios based on different assumptions, without any indication 
of which assumption is likely to be correct. 

Decision makers require some sort of framework within which model results can be 
combined with other quantitative and qualitative criteria to guide the decision. 
Development of such a framework may be a useful topic for future research. 
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10. Appendix 1: People consulted 
The following people were consulted with during the course of this work: 

Name Date of meeting 

Dr. Marcus Hutber, EpiVet November 21st 2002 

Prof. John Wilesmith, VLA January 22nd 2003 

Mr. Ed Van Klink, Dutch Ministry of 
Agriculture 

January 24th  2003 

Prof. Neil Ferguson, Imperial College February 18th  2003 

Mr. Fred Landeg, DEFRA February 18th  2003 

Dr. Rowland Kao, University of Oxford February 20th 2003 

Dr. Graham Medley 
Dr. Laura Green 
Dr. Matt Keeling, University of Warwick 

February 24th 2003 

Mr. John Gloster, UK Met Office February 27th 2003 

Dr. Soren Alexandersen, 
Dr. David Paton, Pirbright Laboratory, 
IAH 

February 27th 2003 

Dr. Marion Wooldridge, Risk Research, 
VLA 

March 14th 2003 

Prof. Roger Morris, Massey University, 
NZ 

March 26th  2003 (by telephone) 

Prof. Mark Woolhouse, University of 
Edinburgh 

by e-mail – see correspondence at Appendix 3 

Dr. Mike Thrusfield, University of 
Edinburgh 

by e-mail 

Dr. Mirjam Nielen, Wageningen 
Agricultural University, The Netherlands 

by e-mail 

Dr. Sunetra Gupta, University of Oxford by e-mail 
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11. Appendix 2: Veterinary risk assessments 
Risk assessments carried out for DEFRA during the 2001 FMD epidemic in UK. (source of 
list: http://www.defra.gov.uk/footandmouth/disease/risks/index.htm) 

11.1 Numbered Risk Assessments 
1. Moving livestock directly from farm a to farm b  
2. Moving livestock (sheep, cattle, pigs) carcases from their place of slaughter to a different 

place for disposal (22 March)  
3. Bulk Feed Delivery to Form D premises by lorry (22 March)  
4. Opening footpaths to the public Revised (January 2002)  
5. Feral Deer on infected premises (22 March)  
6. Moving sheep to an alternative place of slaughter, and from there to a further place for 

disposal (26 March)  
7. Feral wild boar and domestic livestock (9 April)  
8. Meat and waste products distribution (9 April)  
9. Opening deer parks to the public (31 May)  
10. Horse racing meetings (January 2002)  
11. Farm visits by DEFRA personnel (10 October)  
12. Specified equestrian events? (January 2002)  
13. Moving hay and straw onto a farm (26 April)  
14. Official equestrian events on non-agricultural land (January 2002)  
15. Sheep shearing (revised) (07 February 2002)  
16. Opening farm shops (4 June)  
17. Car boot sales on agricultural land (31 May)  
18. Collection and transport of bull semen and artificial insemination of cows (6 June)  
19. Grouse shooting (16 July)  
20. Sheep dipping (revised) (07 February 2002)  
21. Vaccination of TSE experimental animals (26 July)  
22. "Pick Your Own" operations on farms (1 August)  
23. Shooting Pheasants and Partridge (6 August)  
24. Wildfowling (24 August)  
25. Falconry (15 November 2001)  
26. Hunting with dogs (revised) (07 February 2002)  
27. The risk of causing new outbreaks of FMD if the wildlife unit resumes work on the 

randomised Badger Culling Trial? (14 November)  
28. What is the risk of causing new outbreaks of FMD if livestock are sold in markets? (January 

2002)  

11.2 Un-numbered Risk Assessments 
∗  Preliminary discussion of the risk assessment for the resumption of hunting with dogs.(14 

October) 
∗  Autumn movements (2 August)  
∗  Transmission of Foot and Mouth Disease by Birds. (23 April)  
∗  Assessment of risk due to BSE infectivity from burning cattle (revised 7 April) 
∗  Addendum to Assessment of risk due to BSE infectivity from burning cattle (24 May)  
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12. Appendix 3: Specific questions and responses on modelling issues; 
Professor Mark Woolhouse 
Dear Professor Woolhouse, 
 
Here are the specific questions I would appreciate your feedback on, if possible: (Professor 
Woolhouse’s written responses are reproduced in Arial font): 
 
1. Modelling and decision making during the 2001 epidemic: 

a. What were the key items of field data required to make the models? Were these data available 
in time and of sufficient quality (accuracy and completeness)? 

b. In case there was a shortfall in data required for the models, did this lead to limitations in the 
value of the models for decision making on policy – e.g. the decision that culling of contiguous 
premises was essential? 

c. How were any model limitations taken account of in the decision making process? Do you 
think sufficient sensitivity analysis of the model outputs to uncertain inputs was carried out? Do 
you think DEFRA/other govt. bodies possessed and used staff with the right types and level of 
skills to appreciate the limitations of modelling at that time? 

d. Do you have any specific suggestions as to how the use of models in the decision making 
process could have been improved? 

 
1. This section refers to modelling and decision making. These are two separate activities 

and, as I understand it, remained separate during the 2001 epidemic. Models were used 
as part of the advice given to both the Chief Veterinary Officer and the Chief Scientific 
Advisor, who passed this advice on as they saw fit. None of my immediate colleagues, 
nor myself, was present at any ‘decision-making’ committees at any stage. These 
comments are therefore confined to modelling activities. 
- The specific aspect queried, regarding the ‘contiguous cull’, was found at the time to be 
robust both to modelling approach (four different models were being used at one stage) 
and to uncertainties in the data (the effects of both noise and bias were extensively 
explored, often specifically to address questions raised from the field). Subsequent 
analysis and, indeed, independent analyses carried out even before 2001, confirm the 
potential effectiveness of this measure. Contrary opinions have been expressed but, so 
far, we are aware of none which is ‘evidence-based’, i.e. follows from a quantitative 
analysis of field data. A particular concern is criticism based on invalid analyses 
published without peer-review (e.g. Vet. Rec. 10/11/01, p600), which does nothing to 
advance what is a necessary and important scientific debate. 
- That said, there were identifiable deficiencies in the data available, especially in the 
census data describing the distribution of livestock and livestock farms (see Supplement 
to Keeling and others, 2003). For this reason, it was advised that while models could be 
used for strategic planning they could not be used for local decision making (e.g. which 
farms were ‘contiguous’ in practice); hence the importance of local input for the 
implementation of control measures on the ground. 
- Another practical problem was that, although data on infected premises was made 
available promptly (often within 24-48 hours) data on premises included in the extended 
culls took longer to appear and, for the ‘welfare’ culls may still be incomplete even now. 
This underlines the importance of comprehensive ‘real time’ record keeping to keep track 
of what is actually going on on the ground. 
- It is unclear what is meant by the ‘limitations of modelling’ in this context. The strengths 
and weaknesses of the various models were extensively discussed at the time and 
continue to be discussed. In the event, the outcome was that the models correctly 
indicated that the epidemic was ‘out of control’ in mid-March, provided accurate short-
term predictions throughout the epidemic, and have since proved capable of reproducing 
the epidemic with considerable accuracy (allowing for the actual rather than intended 
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implementation of culling effort). All of these outputs proved useful to senior advisors and 
decision makers. 

 
2. Current modelling. I have seen the note describing your current project, which you recently 

supplied to the DEFRA Science Group. This has among its stated aims/benefits, “the results will 
inform policy makers regarding the control of FMD…” and, “to develop … computer model … 
which will inform the design of disease control policies and significantly improve the management 
of individual disease outbreaks.” 
a. Has there been any dialogue with DEFRA regarding any particular control policies they may 

be seeking guidance on, or is your aim to explore novel control strategies with the model which 
may then be suggested to DEFRA? 

b. Whilst development of the model is being progressed independently of DEFRA, would you 
envisage working more closely with DEFRA, using the model to address specific policy 
questions in future? If so, would you envisage that as part of this process the model itself would 
be ‘opened up’ for critical review, so that its limitations, sensitivities etc. could be fully 
appreciated by decision makers and their advisors? 

c. Do you envisage the model being used as a tactical tool in any future FMD outbreak? If so, 
how would this be managed – should DEFRA be training staff in its use or would the use of the 
model be supplied as an ‘outside service’ in case of need? 
If the use of the model in an outbreak is foreseen, is there need for supporting work to make this 
achievable – e.g. development of specific databases, development of new disease data 
management systems to be in place during outbreaks? 

2. This set of questions refers to the Wellcome Trust-funded FMD modelling project with 
which we are currently engaged. 
- The results of this work will be published in peer-reviewed scientific journals and, as 
such, will be generally available to DEFRA. Should DEFRA, or any other agency, wish 
more detailed briefings and discussion regarding the results then we will be happy to 
provide these. We have willingly agreed to keep DEFRA informed regarding progress 
with this project. 
- The major difference between this work and a project aimed at specific policy questions 
is that we will not be limited by current policy options. For example, we will consider in 
some detail the potential of prophylactic vaccination to prevent FMD epidemics, even 
though this is not a policy option within the UK at the present time.  
- Translation of the models developed during our project into tactical tools for use during 
future FMD epidemics would require significant additional investment. 
- We emphasize that there will never be a ‘definitive’ model of FMD. Different modelling 
approaches have different strengths and weaknesses and it is generally advisable to 
have more than one model operating in parallel. 

 
3. Other required research: 

a. Would you say that the basic model building methodology is already available to produce 
models of optimal complexity, accuracy, precision etc. for decision support roles – or is there 
still need for research/development in the basics of model building? 

b. It would seem an obvious statement that there is always a need for accurate data and good 
knowledge in order to produce accurate model output. Would you identify any particular aspects 
of FMD epidemiology which require research in order to provide better model input? 

3. I agree strongly with the suggestion that model building methodology requires further 
development. At present, many modelling exercises are more or less ad hoc. This does 
not in itself negate their value, but the absence of a recognised methodological 
framework hampers both model development and evaluation. This is an issue which will 
be addressed in future work. 

Particular aspects of FMD epdemiology which require attention are discussed at 
length in the Royal Society report on ‘Infectious Diseases of Livestock’. Topics of 
particular relevance to my own work include: 
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- further quantification of risk factors for the spread of FMD between farms (noting 
that susceptibility is only half the story; we also need information on risk factors 
for infectiousness) 

- quantitative information on livestock movement patterns; 
- quantitative experimental information on the short term impact of vaccination on 

livestock exposed shortly afterwards (and shortly before), again with emphasis on 
the potential for transmission. 

 
Mark Woolhouse 

25-03-03 
 
Thank you for your time, 
 
Nick Taylor 
VEERU 
School of Agriculture, Policy and Development 
Earley Gate, PO Box 237 
Reading, UK 
 


